por Abner » Qua Mai 11, 2011 17:30
Prove a seguinte afirmação, assumindo que A
e B são eventos com P(A)>0 e P(B)>0:
P(A|B)>P(A) se e só se P(B|A)>P(B) se e só se P(A?B)>P(A)P(B).
Neste caso, dizemos que A e B são eventos positivamente correlacionados
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Qua Mai 11, 2011 23:26
Você se lembra a definição de probabilidade condicional? Se sim, deve sair fácil.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Abner » Qui Mai 12, 2011 17:01
Marcelo sei sim o conceito de probabilidade condicional mas tenho dificuldade quando se trata de provar....
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por lanca » Dom Mai 15, 2011 02:05
Oi...Por favor veja se estou no caminho certo
P( A/B) = P ( A inter B)/ P (B), P(B/A)= P ( A inter B)/ P (A)
Posso dizer que se P( A/B) > P(A) então ( A inter B) > P(A). P(B)
e que se P( B/A) > P(B) então P( A inter B) > P(A).P(B)
Então P(A/B) > P(A) (B/A) > P(B) ENTÃO P ( A inter B) > P(A). P(B)
Me corrija por favor
-
lanca
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Mai 15, 2011 00:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10349 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 21655 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5347 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4522 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4535 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.