por alexzumalde » Seg Jan 17, 2011 11:09
Senhores,
gostaria de achar alguma referência que explique como uma distribuição binomial se comporta através do tempo. Por exemplo, em um experimento, um pequeno programa executa uma série de funções repetidas vezes e sobre essas funções são provocados erros com uma certa frequência. Teriamos então uma série de resultados divididos entre corretos e incorretos (parte dos erros injetados podem não gerar erros no resultado das funções). Minha dúvida principal diz respeito a função de densidade de probabilidade. No experimento, seriam considerados os tempos decorridos até que fosse detectada uma ocorrência de resultado incorreto. Ou seja, eu disparo a execução do programa, disparo a injeção de erros e aguardo até que um resultado incorreto ocorra. Então, registro esses tempos e traço uma função de densidade de probabilidade (termo associado: MTTF - mean time to failure). Eu acredito que a distribuição não seria normal e sim exponencial, mas preciso fundamentar essa premissa. Alguém conheçe um livro que aborde esse tipo de questão ? Seria mesmo um distribuição exponencial ? É possível que dependendo dos parametros eu obtenha uma distribuição normal ?
Eu já levantei esses tempos através de simulação para a usa-los na conclusão do meu mestrado na POLI e a distribuição "parece" ser exponencial. No momento preciso fundamentar tais resultados.
Alex Zumalde
-
alexzumalde
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Jan 17, 2011 10:54
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Neperiano » Qui Out 27, 2011 15:27
Ola
Não sei se é isso, mas se usar confiabilidade.
A questão das falhas ou acertos, acredito que não tenha a ver com a distribuição, ambas podem falhar, tenque cuidar para ver se sua amostra é continua ou númerica (esqueci o nome da outra) porque se não pode ser poisson, tambem.
Se você lagar no google apostila de estatisitca deve ter
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Distribuição normal] com normal reduzida e tabela, dúvida
por MarciaChiquete » Sáb Set 17, 2016 20:38
- 0 Respostas
- 8376 Exibições
- Última mensagem por MarciaChiquete

Sáb Set 17, 2016 20:38
Estatística
-
- Distribuição normal
por lanahwinchester » Qui Jun 30, 2011 13:58
- 2 Respostas
- 5905 Exibições
- Última mensagem por sena

Sáb Jul 30, 2011 12:41
Estatística
-
- Distribuição Normal
por paivadaniel » Qui Jul 14, 2011 17:23
- 0 Respostas
- 4466 Exibições
- Última mensagem por paivadaniel

Qui Jul 14, 2011 17:23
Estatística
-
- Distribuição Normal
por EulaCarrara » Dom Set 11, 2011 17:05
- 1 Respostas
- 5708 Exibições
- Última mensagem por EulaCarrara

Dom Set 11, 2011 17:19
Estatística
-
- Distribuição Normal
por Jean Almeida » Dom Dez 03, 2017 19:47
- 0 Respostas
- 5822 Exibições
- Última mensagem por Jean Almeida

Dom Dez 03, 2017 19:47
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.