por ibatexano » Dom Set 13, 2009 02:07
um problema que não consigo resolver :
Uma bandeira é formada de 7 listras,que devem ser pintadas de 3 cores diferentes.de quantas maneiras distintas sera possivel pintá-la de modo que duas listras adjacentes nunca estejam pintadas da mesma cor?
se fosse 7 cores e 3 listras,seria assim o raciocinio:cada bandeira consiste de uma sequencia de 3 cores distintas,

.
mas o numero de bandeiras é maior que o numero de cores,as cores se repetiriam,sequência de 7 cores,

.
não consigo achar uma maneira de resolver!me ajudem se puderem,abraço!
-
ibatexano
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Set 13, 2009 01:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Dom Set 13, 2009 08:50
Olá ibatexano,
Tentarei explicar o problema usando o diagrama de árvore e, é claro, o princípio fundamental de contagem.
Vamos supor que temos as cores A, B e C. Olhando para o diagrama de árvore (ver anexo), a 1ª listra pode ser pintada de 3 maneiras diferentes.
Após a primeira listra ser pintada com uma determinada cor, a 2ª listra só poderá ser pintada de duas maneiras diferentes. Por exemplo, se a 1ª listra for A, a segunda só poderá ser B ou C.
Após a segunda listra ser pintada, por exemplo, com a cor B, a 3ª listra só poderá ser pintada de duas maneiras diferentes (A ou C).
Como temos 7 listras, de acordo com o princípio fundamental de contagem:

Nota: Podemos repetir as cores, mas listras adjacentes não podem ter a mesma cor!
Espero ter ajudado e aguardo a opinião de outros participantes.
- Anexos
-

-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por ibatexano » Dom Set 13, 2009 15:50
é isso mesmo cara,depois que eu postei essa qestão,eu tentei fazer novamentee assim mesmo!
usei aqele raciocinio do outro problema sobre bandeira de qe as bandeiras poderiam voltar,ja qe sendo o numero de elementos menor qe o numero de elementos da sequencia(listras),não teria como não repetir as cores,oqe não poderia era qe duas cores adjacentes não fossem iguais.oqe fiqei pensando era qe poderia ter uma outra forma,mas qe não tem como mesmo resolver de outra forma!
valeu ,abraço!
-
ibatexano
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Set 13, 2009 01:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema das Bandeiras
por Joana Gabriela » Seg Ago 09, 2010 10:15
- 2 Respostas
- 3025 Exibições
- Última mensagem por Douglasm

Qua Ago 11, 2010 20:00
Progressões
-
- Bandeiras
por Rafael16 » Qua Jan 30, 2013 19:23
- 1 Respostas
- 1174 Exibições
- Última mensagem por young_jedi

Qua Jan 30, 2013 22:02
Probabilidade
-
- [Análise Combinatória]Cores das bandeiras.
por francisbarbosa » Seg Fev 27, 2012 20:25
- 1 Respostas
- 1590 Exibições
- Última mensagem por MarceloFantini

Ter Fev 28, 2012 09:49
Estatística
-
- Problema sobre PA
por Cleyson007 » Dom Mai 25, 2008 01:53
- 3 Respostas
- 7873 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 04:31
Progressões
-
- Problema sobre Circunferência
por Cleyson007 » Dom Jun 29, 2008 01:18
- 4 Respostas
- 7161 Exibições
- Última mensagem por Cleyson007

Dom Ago 24, 2008 17:25
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.