por gutorocher » Qua Jul 21, 2010 21:59
Uma urna contém 6 bolas brancas e 4 bolas vermelhas iguais em tudo menos na cor. Retiramos uma bola, anotamos a cor, recolocamos a bola na urna e retiramos mais uma bola.
a.Qual a probabilidade do resultado ser uma bola vermelha seguida de uma branca ?
6 bolas brancas
4 vermelhas
totalizando = 10 bolas sendo na retirada das bolas tem reposição, conforme mostra no enunciado.
Bola Vermelha:

Bola Branca:

tendo resultado final =

tendo no exercício como resposta : no meu caso deu 24% poderia verificar se o cálculo que fiz está certo, pois não fechou ou é erro do exercício.
a. 10%
b. 12%
c. 18%
d. 36%
-

gutorocher
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jul 21, 2010 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: CCP
- Andamento: formado
por Tom » Qui Jul 22, 2010 02:01
Creio que você está correto!
Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por gutorocher » Sex Jul 23, 2010 16:10
preciso que mais pessoas verifiquem está questão !
desde já agradeço a todos
-

gutorocher
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jul 21, 2010 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: CCP
- Andamento: formado
por MarceloFantini » Sáb Jul 24, 2010 01:43
Está certo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por gutorocher » Sáb Jul 24, 2010 02:12
obrigado pela ajuda
-

gutorocher
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jul 21, 2010 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: CCP
- Andamento: formado
por marcelorenato » Qui Ago 12, 2010 19:09
Corretíssimo!
-
marcelorenato
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Ago 12, 2010 00:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia e Matemática
- Andamento: formado
por alexandre32100 » Sex Ago 13, 2010 13:19
Perfeito.

ou

-
alexandre32100
-
por gutorocher » Sex Ago 13, 2010 15:51
obrigado pelo esclarecimento
-

gutorocher
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jul 21, 2010 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: CCP
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Verificar a Resolução
por eli83 » Ter Out 09, 2012 09:13
- 3 Respostas
- 1725 Exibições
- Última mensagem por eli83

Qua Out 10, 2012 00:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Verificar a Resolução I
por eli83 » Ter Out 09, 2012 09:55
- 3 Respostas
- 1597 Exibições
- Última mensagem por eli83

Qua Out 10, 2012 00:31
Cálculo: Limites, Derivadas e Integrais
-
- [verificar a existência] limite trigonométrico
por Fabio Wanderley » Sáb Mar 24, 2012 13:14
- 1 Respostas
- 1404 Exibições
- Última mensagem por MarceloFantini

Sáb Mar 24, 2012 14:49
Cálculo: Limites, Derivadas e Integrais
-
- [Taxa de variação] verificar o desenvolvimento .
por e8group » Sex Jun 01, 2012 20:02
- 3 Respostas
- 5573 Exibições
- Última mensagem por vivik

Qui Mai 17, 2018 05:40
Cálculo: Limites, Derivadas e Integrais
-
- [Equação de planos] Verificar meu raciocínio
por MrJuniorFerr » Qua Out 10, 2012 17:03
- 1 Respostas
- 1195 Exibições
- Última mensagem por young_jedi

Qua Out 10, 2012 19:18
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.