• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor apoliveirarj » Dom Jul 11, 2010 16:56

oi, não consigo resolver esta questão de um concurso... alguém pode me ajudar? Vlw
Paulo e Raul pegaram 10 cartas de baralho para brincar: A, 2, 3,4,5,8, 9, 10, J e Q, todas de copas. Paulo embaralhou as 10 cartas, colocou-as aleatóriamente sobre a mesa, todas voltadas para baixo, e pediu a Raul que escolhesse duas. Considerando-se que todas as cartas têm a mesma chance de serem escolhidas, qual a probabilidade de que, nas duas cartas escolhidas por Raul, esteja escrita uma letra (A,J ou Q)?
apoliveirarj
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Jul 03, 2010 21:52
Formação Escolar: GRADUAÇÃO
Área/Curso: marketing
Andamento: cursando

Re: probabilidade

Mensagempor Elcioschin » Dom Jul 11, 2010 22:24

Total de possibilidades = C(10, 2) = 45

Chances de NÃO sair = C(7, 2) = 21

Chances de sair = 45 - 21 = 24

Probabilidade de sair ----> P = 24/45 ----> P = 8/15 ----> P ~= 53%
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: probabilidade

Mensagempor Anderson POntes » Dom Jul 11, 2010 22:29

ELIO DESCULPE A MINHA IGNORANCIA MAS VC PODERIA DETALHAR + COMO VC CHEGOU NESSE RESULTADO?
Anderson POntes
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jul 08, 2010 17:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico eletrotécnica
Andamento: formado

Re: probabilidade

Mensagempor Tom » Dom Jul 11, 2010 22:38

Consideraremos que as cartas são escolhidas simultaneamente.

Por definição, P(x)=\dfrac{n(X)}{n(\Omega)} , onde n(x) é o número de casos em que o evento x acontece e n(\Omega) é o número de casos possíveis.

Seja P(x) a probabilidade de que esteja escrita uma letra (A,J ou Q) dentre as cartas escolhidas;

Calculemos n(\Omega):
Basta calcular o número de combinações das dez cartas tomadas duas a duas, isto é: \binom{10}{2}=45


Calculemos n(X):

i)Considerando que uma das cartas é o "A", a outra carta escolhida pode ser uma das restantes, assim: 9 combinações.
ii)Considerando que uma das cartas é o "J", a outra carta escolhida pode ser umas das oito restantes já que contabilizamos o par (A,J) no item anterior. Assim: 8 combinações.
iii)Considerando que uma das cartas é o "Q", analogamente teremos 7 combinações.

Assim, n(X)=9+8+7=24

Por fim, P(X)=\dfrac{24}{45}, isto é, P(X)=\dfrac{8}{15}


Uma nota importante é que, se considerarmos a ordem em que as cartas são escolhidas, isto é, as cartas não são escolhidas simultaneamente, obteremos outro valor, conforme abaixo:

Como todas a escolha de qualquer carta é equiprovável, temos:

Na primeira carta, a probabilidade de escolher "A,Q,J" é \dfrac{3}{10}

Na segunda carta, a probabilidade de escolher "A,Q,J" é \dfrac{2}{10} porque uma dentre essas foi escolhida anteriormente.

Assim, P(x)=\dfrac{3}{50}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.