• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dois modos de falha

Dois modos de falha

Mensagempor rassis46 » Qui Abr 15, 2010 20:00

Caros, tenho o seguinte problema de confiabilidade que sei resolver por simulação de Monte-Carlo mas preciso de saber como fazê-lo analiticamente:

Um moínho de martelos para partir pedra possui placas de desgaste que atingem a espessura limite admissível em momentos descritos por uma distribuição de probabilidade Weibull com os parâmetros: Localização = 250 horas; Forma = 4 e Escala = 800 horas. Estas placas também podem partir em momentos descritos por uma distribuição de probabilidade Exponencial negativa com o parâmetro: Média = 1/1.600 falhas/hora.

Pretendo saber qual a frequência média de intervenções de substituição: umas vezes por desgaste, outras vezes por quebra.

Construindo um modelo de simulação de Monte-Carlo, obtemos 0,00138 substituições/hora. Mas como resolver analiticamente? Podem ajudar-me?

Grato,
rassis46
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 15, 2010 19:35
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Doutoramento em Engenharia mecânica
Andamento: formado

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.