• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas Lineares

Sistemas Lineares

Mensagempor Mateus Jose Peron » Sáb Jul 11, 2015 19:05

Um aluno obteve 57 pontos em uma prova de 20 testes de múltipla escolha, que adota o seguinte critério de correção:
*Cada teste com resposta certa vale 5 pontos;
*Cada teste com resposta errada vale -2 pontos ;
*Cada teste não respondido não conta ponto;

a) A quantos testes esse aluno respondeu corretamente?
b) A quantos testes esse aluno não respondeu ?
Mateus Jose Peron
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 11, 2015 19:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Sistemas Lineares

Mensagempor nakagumahissao » Sex Jul 17, 2015 15:21

Veja bem, na questão que postou, mais uma pequena informação deveria ter sido fornecida. Considerarei que esteja correta e resolveremos da seguinte forma:

Sabendo-se que 5 pontos são ganhos por cada resposta certa, perde-se 2 pontos para cada errada e se ganha 0 pontos para cada uma deixada em branco, seja c o número de respostas certas, e o número de cada resposta errada e b o número de cada resposta deixada em branco, tem-se que:

[1] 5c - 2e =57
e
[2] c + e + b = 20

5c = 57 + 2e

c = \frac{57 + 2e}{5}


Usando esta última equação obtida em [2] acima, tem-se que:

c + e + b = \frac{57 + 2e}{5} + e + b = 20

Multiplicando-se ambos os lados por cinco, teremos:

57 + 2e + 5e + 5b = 100 \Rightarrow 7e = 100 - 57 - 5b \Rightarrow e = \frac{43 - 5b}{7}

Como uma informação parece estar faltando, por tentativa e erro, tentaremos descobrir o valor de b. Veja a tabela abaixo:

Para b = 0 => e = 43/7 que não é um valor inteiro
Para b = 1 => e = 38/7 que não é um valor inteiro
Para b = 2 => e = 33/7 que não é um valor inteiro
Para b = 3 => e=28/7 = 4
Para b = 4 => e = 23/7 que não é um valor inteiro
Para b = 5 => e = 18/7 que não é um valor inteiro
Para b = 6 => e = 13/7 que não é um valor inteiro
Para b = 7 => e = 8/7 que não é um valor inteiro
Para b = 8 => e = 3/7 que não é um valor inteiro
Para b = 9 => e < 0
Para b = 10 => e < 0
e assim por diante

Então, apenas nos interessa o valor de b sendo b = 3

Tendo este valor em mente, podemos então calcular o restante dos valores necessários

Usando b = 3, já sabemos que e = 4 e assim,


c = \frac{57 + 2e}{5} \Rightarrow c = \frac{57 + 2 \times 4}{5} \Rightarrow c = \frac{57 + 8}{5} = \frac{65}{5} \Rightarrow c = 13

Assim, a única resposta possível para este problema seria,


13 corretas, 4 erradas e 3 deixadas em branco.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.