• Anúncio Global
    Respostas
    Exibições
    Última mensagem

porcentagem

porcentagem

Mensagempor acalves » Sex Abr 06, 2012 23:22

Estou fazendo outro exercicio de % mas não deu certo :

Dois levantamentos sobre o número de alunos ingressantes em uma instituição com objetivo de acompanhar o índice de desistência nos cursos :um na metade do semestre e outro no final do semestre letivo.
No 1º levantamento constatou que 10% dos alunos ingressantes naquele semestre haviam desistidos dos cursos
No 2º levantamento constatou que 5% dos alunos que estavam cursando na ocasião do 1º levantamento tinham desistido dos cursos.Tendo como base o número de alunos ingressantes naquele semestre letivo, o índice de desistência nos cursos dessea instituição, no referido semestre : resposta 14,5%

minha tentativa
1º levantamento 10-100=90 é número de alunos ingressantes naquele semestre letivo
2ºlevantamento 5*90=45 é número desistência nos cursos

90/45 = 2%
acalves
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 02, 2012 23:31
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: porcentagem

Mensagempor DanielFerreira » Sáb Abr 07, 2012 01:10

Baseado no seu raciocínio.
No 1º levantamento constatou que 10% dos alunos ingressantes naquele semestre haviam desistidos dos cursos

Haviam 100%..., ou seja 100 alunos ingressantes.

Desistiram 10%, ou seja 10 alunos.

Sabemos então que continuaram estudando 90 alunos.

No 2º levantamento constatou que 5% dos alunos que estavam cursando na ocasião do 1º levantamento tinham desistido dos cursos.

5% dos 90 alunos desistiram, daí:
\frac{5}{100} . 90 =

4,5 alunos. (ESTRANHO esse valor, 4 alunos e meio)
... vamos a questão.

Esses 4,5 alunos (4,5%) desistiram.


Portanto,
10% + 4,5% =
14,5%
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: porcentagem

Mensagempor acalves » Sáb Abr 07, 2012 01:28

ah, eu achei que eu devia fazer números de ingressantes dividido por números de desistentes , mas era pra somar o resultado do 1º levantamento e do 2º .

obrigada valeu eu chego lá....
acalves
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 02, 2012 23:31
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: porcentagem

Mensagempor DanielFerreira » Sáb Abr 14, 2012 20:05

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}