• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

Mensagempor VFernandes » Qui Out 06, 2011 13:50

Caros amigos, primeiramente peço desculpas se o assunto foge um pouco do tema, mas foi a seção mais adequada que encontrei.
Tenho o seguinte problema em minhas mãos:
\begin{pmatrix}
   4 & -1 & 0  \\
   -2 & 3 & -1 \\ 
   -1 & -3 & 5
\end{pmatrix} \begin{pmatrix}
   {x}_{1}} \\
   {x}_{2}} \\ 
   {x}_{3}}
\end{pmatrix} =  \begin{pmatrix}
   2\\
   0 \\ 
   1
\end{pmatrix}
Calcule uma iteração por Gauss-Seidel, partindo de = (0,0,0) e estime quantas iterações são necessárias para que se atinja a precisão \epsilon = 0.0001
Bom, vamos lá:

{{x}_{1}}^{1} = \frac{1}{4}(2-(-1)\times0-0\times0)) = 0,5
{{x}_{2}}^{1} = \frac{1}{3}(0-(-2)\times0,5-(-1)\times0)) = 0,33
{{x}_{3}}^{1} = \frac{1}{5}(1-(-1)\times0,5-(-3)\times0,33)) = 0,5

\beta_1 = \frac{1}{4}(1+0) = 0,25
\beta_ = \frac{1}{3}(2\times0,25+1) = 0,5
\beta_3 = \frac{1}{5}(2\times0,25+3\times0,5) = 0,4 portanto,
M = 0.5 (maior dos betas)
Até aqui, sem problemas, a questão vem agora:
Sabemos que:
|x^*-x^k|\leq M^k max|x^*-x^0| portanto,
0.0001\leq 0,5^k |x^*-0|
o que não nos ajuda em muito, pois não sabemos x* (valor exato de x)
Alguma alma caridosa saberia como lidar com isso? Será que temos que delimitar um intervalo onde está contida a solução do sistema?
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59