• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Exponencial - Problema 3

Equação Exponencial - Problema 3

Mensagempor jamiel » Ter Mai 10, 2011 14:03

Resolva as equações exponenciais.

{5}^{2x-1}={125}^{8-x}

{5}^{2x}:{5}^{-1}={5}^{3}:{5}^{-3x}

2x -1 = 3*8 -3x

5x = 24+1

 x = 5

Acredito estar certa, mas se alguém puder fazer alguma análise!

=============================

\sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}

{3}^{\frac{2x}{5}}=7*\frac{{35x}^{2}-1}{35}

Sinceramente, nesta segunda equação, não consigo passar daí!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Equação Exponencial - Problema 3

Mensagempor carlosalesouza » Ter Mai 10, 2011 16:10

Na verdade, meu caro, tem um probleminha
\\
{5}^{2x-1}={125}^{8-x}\\
5^{2x-1} = (5^3)^{8-x}\\
5^{2x-1} = 5^{3(8-x)}\\
2x-1 = 24 - 3x\\
2x+3x=24+1\\
5x=25\\
x=5

Note que {5}^{2x-1}=5^2x:5^1... o 1 é positivo, pois:

5^2x:5^-1

seria o mesmo que:
\frac{5^2x}{5^{-1}} = \frac{5^2x}{\frac{1}{5}}=5^2x\cdot 5 = 5^2x+1

Ok?

Com a outra, vamos primeiro fatorar o 2.187, que fica igual a 3^7

Agora:

\\
\sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}\\
3^{\frac{2x}{5}}=3^7^{\frac{35x^2-1}{35}}\\
\frac{2x}{5}=7\cdot \frac{35x^2-1}{35}\\
\frac{2x}{5}=\frac{35x^2-1}{5}

Como ambos os lados apresentam o mesmo divisor:

\\
2x = 35x^2 - 1\\
35x^2-2x-1=0\\

Aqui caímos temos uma equação de segundo grau:

\Delta = (-2)^2-4(35)(-1)\\
\Delta = 4+140\\
\Delta = 144\\
\sqrt\Delta= \pm12

Assim:

\\
x'=\frac{2+12}{70}=\frac{14}{70}=\frac{2}{10}=\frac{1}{5}\\
x''=\frac{2-12}{70}=-\frac{10}{70}=-\frac{1}{7}

Ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Equação Exponencial - Problema 3

Mensagempor jamiel » Qua Mai 11, 2011 00:30

rsrsrsr O pior é q quando postei isso, logo em seguida consegui resolver, mas tive q sair e não postei a minha solução.

3^(2x/5)=(3^7)^(35x^(2)-1/35)
2x/5 = 7*35x^2-1/35
2x/5=1/5*35x^(2)-1
2x/5=35x^2/5 - 1/5
2x/5=7x^2 -1/5

-7x^2 + 2x/5 + 1/5
?144/25 = 12/5

' -1/7 e ''1/5

Mas valeu de qualquer forma, Carlos.
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?