• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações através das raízes

Equações através das raízes

Mensagempor Carolziiinhaaah » Qui Abr 21, 2011 16:19

Se a equação do 2o grau ax^2 + bx + c = 0, a ? 0, admite as raízes reais não nulas x1 e x2, obter a equação de
raízes:

Imagem

Uploaded with ImageShack.us
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equações através das raízes

Mensagempor MarceloFantini » Qui Abr 21, 2011 16:30

Lembre-se da fatoração de polinômios: ax^2 +bx +c = a(x - x_1)(x-x_2). Troque as raízes pelas que você tem e reescreva em termos dos coeficientes originais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Item a)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:01

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

{\left({x}_{1}+{x}_{2} \right)}^{2}={\left(-\frac{b}{a} \right)}^{2}

{{x}_{1}}^{2}+2{x}_{1}{x}_{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}-2{x}_{1}{x}_{2}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}-2\frac{c}{a}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}-2ac}{{a}^{2}}

{{x}_{1}}^{2}.{{x}_{2}}^{2}=\frac{{c}^{2}}{{a}^{2}}

x^2 - Sx + P = 0

{x}^{2}-\left(\frac{{b}^{2}-2ac}{{a}^{2}} \right)x+\frac{{c}^{2}}{{a}^{2}}=0

{a}^{2}{x}^{2}-\left({b}^{2}-2ac \right)x+{c}^{2}=0
Editado pela última vez por SidneySantos em Sex Abr 22, 2011 09:26, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item b)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:45

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}=\frac{{x}_{1}+{x}_{2}}{{x}_{1}.{x}_{2}}

\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}=-\frac{b}{c}

\frac{1}{{x}_{1}}.\frac{1}{{x}_{2}}=\frac{a}{c}

\frac{1}{{x}_{1}}.\frac{1}{{x}_{2}}=\frac{a}{c}

x^2 - Sx + P = 0

{x}^{2}+\frac{b}{c}x+\frac{a}{c}=0

c{x}^{2}+bx+a=0
Editado pela última vez por SidneySantos em Sex Abr 22, 2011 09:28, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item c)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:56

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}=\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}.{x}_{2}}

\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}=\frac{{b}^{2}-2ac}{ac}

\frac{{x}_{1}}{{x}_{2}}.\frac{{x}_{2}}{{x}_{1}}=1

{x}^{2}-\left(\frac{{b}^{2}-2ac}{ac} \right)x+1=0

ac{x}^{2}-\left({b}^{2}-2ac}\right)x+ac=0
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item d)

Mensagempor SidneySantos » Sex Abr 22, 2011 09:49

ax^2 + bx + c = 0

x^2 - Sx + P = 0

{\left({x}_{1}+{x}_{2} \right)}^{3}={\left(-\frac{b}{a} \right)}^{3}

{{x}_{1}}^{3}+3{{x}_{1}}^{2}{x}_{2}+3{x}_{1}{{x}_{2}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}-3{x}_{1}{x}_{2}\left({x}_{1}+{x}_{2} \right)

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}-3\frac{c}{a}\left(-\frac{b}{a} \right)

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}+3\frac{bc}{{a}^{2}}

{{x}_{1}}^{3}+{{x}_{2}}^{3}=\frac{-{b}^{3}+3abc}{{a}^{3}}

{{x}_{1}}^{3}.{{x}_{2}}^{3}={\left(\frac{c}{a} \right)}^{3}

{{x}_{1}}^{3}.{{x}_{2}}^{3}=\frac{{c}^{3}}{{a}^{3}}

x^2 - Sx + P = 0

{x}^{2}-\left(\frac{-{b}^{3}+3abc}{{a}^{3}} \right)x+\frac{{c}^{3}}{{a}^{3}}=0

{a}^{3}{x}^{2}+\left({b}^{3}-3abc \right)x+{c}^{3}=0
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?