• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de uma equação do 2º grau incompleta

Resolução de uma equação do 2º grau incompleta

Mensagempor yuri gomes » Sex Jul 06, 2012 23:13

Quero sabe como resolve esse equação: x-x = 0
yuri gomes
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Jul 06, 2012 23:02
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: Resolução de uma equação do 2º grau incompleta

Mensagempor DanielFerreira » Sex Jul 06, 2012 23:18

Yuri,
a equação não ficou clara!
Encontrará as raízes ao colocar o x em evidência.

ax^2 + bx = 0 ==> x(ax + b) = 0

x = 0

e

ax + b = 0 ==> x = - \frac{b}{a}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Resolução de uma equação do 2º grau incompleta

Mensagempor MarceloFantini » Sáb Jul 07, 2012 02:50

Sua resolução foi incompleta, visto que não há condições sobre a e b para a segunda parte. Se a=b=0, então todo x \in \mathbb{R} é solução. Se a =0 \text{ e } b \neq 0, não há solução. Se ab \neq 0, então x = - \frac{b}{a}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolução de uma equação do 2º grau incompleta

Mensagempor DanielFerreira » Sáb Jul 07, 2012 12:27

MarceloFantini escreveu:Sua resolução foi incompleta,...

Do seu ponto de vista!
A propósito, talvez não tenha notado que a equação postada pelo Yuri sofreu uma alteração.

MarceloFantini escreveu:...visto que não há condições sobre a e b para a segunda parte.

Se a = 0, não teria sentido o título do tópico;

Como a \neq 0, as duas condições descritas seriam desnecessárias;

b = - 1, (...)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}