• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequações com soma de módulos

Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Dom Jul 10, 2011 13:03

Oie!

Gente, eu to com uma dúvida aqui a respeito de uma inequação que envolve soma de módulos. A inequação é: \left|x + 1 \right| - \left|2 - x \right| > 3.

Eu não estou conseguindo fazer essa soma. Tentei aplicar as propriedae de módulo, mas o x anulou... Tenho um monte de questões assim pra resolver, mas tô meio perdida. Eu sempre coloco aqui o modo como eu tentei resolver, mas é que dessa vez eu não tô nem sabendo começar... *-)

Tem um outro tipo de inequação modular aqui que eu também não tô sabendo fazer... Acho que meu problema é com o módulo!! :)

\left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| > 2

Se alguém puder me ajudar agredeço muitíssimo!!

Se puder colocar a resolução completa pra eu poder acompanhar também agradeço muito!!! :-D

Beijos!!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Dom Jul 10, 2011 21:27

na primeira inequação ao igualar a equação tanto pro < -3 quanto pro >3 e um dos casos voce tira o modulo no sinal oposto, e nesse caso ele nao se anula, assim vai achar um resultado, se o outro resultado X se anula e porque so tem a imagem pra um dos valores, e nao pros dois!
a segunda inequação e so aplicar as condiçoes de existencia... fazer um calculo pra (inequação)>2 e outro para (inequação)<-2 :P
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor MarceloFantini » Seg Jul 11, 2011 04:16

Giulio, não é bem assim. Note que há dois módulos, portanto não se deve fazer isso. Como proceder:

1) Analise os sinais dos módulos individualmente:

|x+1| é zero quando x=-1, positivo quando x > -1 e negativo quando x < -1
|2-x| é zero quando x=2, positivo quando x < 2 e negativo quando x > 2

2) Monte os intervalos e teste:

Primeiro intervalo: x<-1 \Rightarrow -(1+x) - (2-x) > 3 \Rightarrow -3 > 3

Portanto nesse primeiro intervalo não existe solução.

Segundo intervalo: -1 < x < 2 \Rightarrow 1+x - (2-x) > 3 \Rightarrow 2x -1 > 3 \Rightarrow 2x > 4 \Rightarrow x > 2

Novamente resultado inválido.

Terceiro intervalo: x > 2 \Rightarrow 1+x - (-(2-x)) > 3 \Rightarrow 1+x + 2 - x > 3 \Rightarrow 3 > 3

Outra afirmação inválida.

Pelo que notei, não existe intervalo onde está inequação esteja satisfeita. Tem certeza que digitou certo? Para conferir digitei no wolfram e também disse que era falsa.

Na segunda inequação, procure achar as raízes das equações e analise quando a fração é positiva ou negativa, repetindo os passos: veja os intervalos e teste quais os que tem respostas válidas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Ter Jul 12, 2011 00:11

essa questao so possui resposta de uma das equaçoes, ta na minha lista de exercicio tbm :)
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor giulioaltoe » Ter Jul 12, 2011 01:45

a resolução ai... nao fiz a resolução da outra condiçao pois o delta da negativo sendo assim nao existe imagem... o valor fica meio quabrado mas acredito que seja isso!!
Anexos
IMG0001.jpg
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Ter Jul 12, 2011 14:30

Oi!!

Obrigada!! Eu vou ver aki se acompanho o raciocínio e resolvo!!!

Beijos pros dois!! =D
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor MarceloFantini » Ter Jul 12, 2011 15:24

Giulio, novamente o modo de resolver não é este. Siga os passos que eu disse: analise o sinal de \left| \frac{x^2 -5x +6}{x^2 -11x +30} \right| para depois verificar caso a caso e retirar o módulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Qua Jul 13, 2011 14:56

Oi Marcelo!

A primeira equação eu entendi como faz,obrigada!!

Na segunda é que eu ainda não acompanhei seu raciocínio. Você tirou o módulo antes de fazer as operações com a fração? Pelo que eu entendi do seu desenvolvimento você passou o 2 para o primeiro membro, subtraindo-o da fração modular:

\left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| > 2  \Rightarrow  \left|\frac{x^2 - 5x +6}{x^2 - 11x + 30} \right| - 2 > 0

Eu não entendi porque depois daí você tirou o módulo. O resto eu entendi, mas não sei que propriedade você usou pra tirar o módulo da fração. No seu desenvolvimento eu não consegui perceber como você fez isso... Você poderia me explicar? :-D

Beijos e obrigada de novo!!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequações com soma de módulos

Mensagempor LuizAquino » Qua Jul 13, 2011 15:52

Olá Caroline Oliveyra,

Para sanar suas dúvidas, eu recomendo que você revise o conteúdo de inequações modulares.

Um lugar interessante de começar a sua revisão é no canal do Nerckie no YouTube:
http://www.youtube.com/nerckie

Procure pelas vídeo-aulas "Matemática - Aula 27 - Inequação Modular".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequações com soma de módulos

Mensagempor Caroline Oliveyra » Qua Jul 13, 2011 16:22

Minha internet é discada... =(

Mas obrigada, eu vou ver se assisto esse vídeo em algum lugar! kkkkkkkkkkkkk
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D