• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me Ajudam...Álgebra Linear

Me Ajudam...Álgebra Linear

Mensagempor jane_oliveira » Seg Jul 04, 2011 10:21

Alguém pode me ajudar, pois já resolvi, porém não tenho certeza da resposta e preciso postar urgentemente a resposta.

Sabe-se que uma alimentação diária equilibrada em vitaminas deve constar de 170 unidades de vitamina A, 180 unidades de vitamina B, 140 unidades de vitamina C, 180 unidades de vitamina D e 350 unidades de vitamina E.
Com o objetivo de descobrir como deverá ser uma refeição equilibrada, foram estudados cinco elementos. Fixada uma mesma quantidade (1g) de cada elemento, determinou-se que:
i) O alimento I tem 1 unidade de vitamina A, 10 unidades de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 2 unidades de vitamina E.
ii) O alimento II tem 9 unidades de vitamina A, 1 unidade de vitamina B, 0 unidades
de vitamina C, 1 unidade de vitamina D e 1 unidade de vitamina E.
iii) O alimento III tem 2 unidades de vitamina A, 2 unidades de vitamina B, 5 unidades
de vitamina C, 1 unidade de vitamina D e 2 unidades de vitamina E.
iv) O alimento IV tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 2 unidades de vitamina D e 13 unidades de vitamina E.
v) O alimento V tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade
de vitamina C, 9 unidades de vitamina D e 2 unidades de vitamina E.

Se desejarmos obter uma alimentação equilibrada:
a) Encontre o sistema linear que descreve o problema.
b) Discuta o tipo de solução do sistema linear obtido.
c) Quantas gramas de cada um dos alimentos I, II, III e IV devemos ser ingerir diariamente?
d) O sistema linear obtido pode ser resolvido pela Regra de Cramer? Justifique.
e) Para a resolução de sistemas lineares em geral, faça uma comparação entre os métodos de Cramer e de Eliminação de Gauss. Aponte as vantagens e desvantagens de cada um desses métodos.
jane_oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 04, 2011 10:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de produção
Andamento: cursando

Re: Me Ajudam...Álgebra Linear

Mensagempor Neperiano » Seg Jul 04, 2011 19:28

Ola

Primeiramente você monta as equações

I = 1a + 10b + 1C + 2D + 2E

Faça assim para todas

Dai para balancear, eu pegaria um pouco de cada e tentaria formar elas, ou então subsituiria nos valores de a,b,c,d, e na 1 pegaria a 2 até dar.

Tambem daria pra resolver por matrizes.

Não sei exatamente como fez, mas tenque seguir a lógica de montar equações

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?