• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor Mariana Martin » Ter Set 11, 2012 15:39

Sejam A, B e C matrizes quadradas de ordem 3 e O a
matriz nula também de ordem 3. Assinale a alternativa
correta:
a) Se A . B = O, então: A = O ou B = O =>>>>>> falsa!

Pessoal, as outras opções eu não coloquei porque entendi porquê estavam correta, mas essa alternativa eu não consigo entender porquê está errada.

Obrigada
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor Cleyson007 » Ter Set 11, 2012 17:13

Boa tarde Mariana!

Sejam A=
\begin{pmatrix}
   1 & -1 & 1  \\ 
   -3 & 2 & -1  \\
   -2 & 1 & 0
\end{pmatrix} e B=
\begin{pmatrix}
   1 & 2 & 3  \\ 
   0 & 0 & 1  \\
   2 & 4 & 6
\end{pmatrix} matrizes 3x3.

Verás que o produto A.B = 0, e não necessariamente A=0 ou B=0.

Espero que tenha te ajudado.

Comente qualquer dúvida :y:

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Matrizes

Mensagempor Mariana Martin » Ter Set 11, 2012 18:04

Sejam A=
\begin{pmatrix}
   1 & -1 & 1  \\ 
   -3 & 2 & -1  \\
   -2 & 1 & 0
\end{pmatrix} e B=
\begin{pmatrix}
   1 & 2 & 3  \\ 
   0 & 0 & 1  \\
   2 & 4 & 6
\end{pmatrix} matrizes 3x3.

Multiplicando ficaria ( se eu estou certa) :

\begin{pmatrix}
    {C}_{11}& {C}_{12} & {C}_{13}  \\ 
   {C}_{21} & {C}_{22}&{C}_{33} \\
{C}_{31} &{C}_{32}&{C}_{33}
\end{pmatrix}

{C}_{11}: 1.1 + (-1).0 + (1).2 = 3
{C}_{12}: 1.2+(-1).0+1.4= 6
E assim por diante, ou seja :

\begin{pmatrix}
   3 & 6 & etc\\ 
   etc & etc & etc\\
etc &etc& etc
\end{pmatrix}
}

Logo, não daria zero. Acho que é esse o ponto que eu estou tendo dúvida, não sei se estou multiplicando corretamente.
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor Cleyson007 » Ter Set 11, 2012 18:19

Boa tarde Mariana!

Perdão... Escrevi a matriz B errada.

Corrigindo: B=
\begin{pmatrix}
   1 & 2 & 3 \\ 
   2 & 4 & 6 \\
   1 & 2 & 3
\end{pmatrix}

Tente agora, ok?

Fico te aguardando.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Matrizes

Mensagempor Mariana Martin » Ter Set 11, 2012 18:23

Eu tentei algumas vezes e parece que agora sim essa matriz se anula.
Entendi o porquê.

Muito obrigada!
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor Cleyson007 » Ter Set 11, 2012 18:28

Boa tarde Mariana!

Espero que você tenha entendido o raciocínio do exercício..

O produto A.B = 0, e, não necessariamente, A = 0 e nem B = 0.

Entendido? :y:

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Matrizes

Mensagempor Mariana Martin » Qua Set 12, 2012 09:23

Entendi sim, obrigada.
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: