• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor libecker » Seg Abr 16, 2012 18:37

Seja  a  matriz A =
\begin{pmatrix}
  1 & 2  \\ 
  3 & 6 
\end{pmatrix} . Indique uma matriz quadrada B de ordem 2 não nula tal que A . B = \begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}
libecker
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 16, 2012 11:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: Matrizes

Mensagempor LuizAquino » Seg Abr 16, 2012 19:58

libecker escreveu:Seja a matriz A = \begin{pmatrix}
  1 & 2  \\ 
  3 & 6 
\end{pmatrix} . Indique uma matriz quadrada B de ordem 2 não nula tal que A . B = \begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}


Suponha que:

B = \begin{pmatrix}
   x & y  \\ 
   z & w
\end{pmatrix}

Temos então que:

\begin{pmatrix}
   1 & 2  \\ 
   3 & 6
\end{pmatrix}
\begin{pmatrix}
   x & y  \\ 
   z & w
\end{pmatrix}
=
\begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}

Com isso podemos montar o sistema:

\begin{cases}
x + 2z = 0 \\
y + 2w = 0 \\
3x + 6z = 0 \\
3y + 6w = 0
\end{cases}

Note que esse sistema é equivalente a:

\begin{cases}
x + 2z = 0 \\
y + 2w = 0
\end{cases}

Esse sistema linear possui infinitas soluções (pois temos 2 equações e 4 incógnitas). Basta você determinar uma solução que não seja x = y = z = w = 0.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: