• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nucleo e imagem

Nucleo e imagem

Mensagempor baianinha » Sex Jan 21, 2011 21:00

Gostaria de saber como se calcula o nucleo e a imagem de uma transformação Linear?

Alguém poderia mim ajudar?

Assim...tenho a lei que é o primeiro passo...Mas e ai, faço o q depois disso?

Exemplo, q peguei nesse forum mesmo...lei é ( x-y;5x-8y;-5x +10y)
sei q agora monto um sistema e daí??? vou para onde?? alguém poderia mim ajudar e a imagem fica como?
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Nucleo e imagem

Mensagempor LuizAquino » Sáb Jan 22, 2011 11:44

Olá Baianinha,

Vejamos um exemplo. Vamos considerar a transformação linear T:\mathbb{R}^2 \to \mathbb{R}^3 definida por T(x,\,y) = (x-y,\, 5x-8y,\, -5x +10y).

O núcleo (ou kernel) dessa transformação linear é definido como:
N(T) = \{ v\in \mathbb{R}^2 \mid \, T(v)=0\}
Portanto, precisamos resolver a equação:

T(x,\, y) = 0

(x-y,\, 5x-8y,\, -5x +10y) = 0

De onde obtemos o sistema:
\begin{cases}
x - y = 0 \\
5x - 8y = 0 \\
-5x + 10y = 0
\end{cases}

A única solução desse sistema é x=0 e y=0. Portanto o núcleo dessa transformação tem apenas um elemento, que é o (0, 0). Ou seja, diremos que:
N(T)=\{ (0,\, 0) \}


A imagem dessa transformação linear é definido como:
Img(T) = \{ T(v) \mid v \in \mathbb{R}^2\}

Para determinar a imagem podemos determinar uma base para a mesma.

Nesse exemplo, todos os elementos da imagem tem o formato (x-y, 5x-8y, -5x +10y). Note que qualquer elemento dessa imagem pode ser escrito como combinação linear dos vetores (1, 5, -5) e (-1, -8, 10):
(x-y, 5x-8y, -5x +10y) = x(1, 5, -5) + y(-1, -8, 10).

Portanto, o conjunto {(1, 5, -5), (-1, -8, 10)} gera a imagem. Se esse conjunto for L.I., então ele formará uma base para a imagem.

De fato, ele é L.I., pois a equação
k(1, 5, -5) + m(-1, -8, 10) = 0,
só possui uma única solução que é k=m=0.

Sendo assim, temos que:
Img(T) = \{k(1, 5, -5) + m(-1, -8, 10) \mid k,\, m \in \mathbb{R}\}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}