por Cleyson007 » Sáb Jul 19, 2008 13:21
Olá, bom dia, tudo bem?
Gostaria de saber se a resolução do seguinte determinante (pelo Teorema de Laplace) está correta!!!
Desde já agradeço...
O determinante é o seguinte----> 
Procurei resolver pela coluna que tivesse a maior quantidade de zeros (

,

,

e

)!!!
Joguei na fórmula --->

Resolvendo, encontrei o valor de

para

.
Peguei o valor obtido (

) e multipliquei pelo valor representado em

(

.
Obtendo como resposta

!!!

Está correto
Forte Abraço!!!
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por admin » Sáb Jul 19, 2008 16:40
Olá Cleyson, boa tarde!
Em primeiro lugar, talvez tenha sido algum erro na edição, mas este determinante não é igual a -12.
Até porque parece ser o determinante que você quer calcular.
Cleyson007 escreveu:O determinante é o seguinte---->

Estou considerando que o problema seja o seguinte:

Cleyson007 escreveu:Joguei na fórmula --->

O cofator de

também pode ser chamado de
complemento algébrico do elemento 
, também indicado por

.
Cleyson007 escreveu:Resolvendo, encontrei o valor de

para

.
Cleyson,

é o valor calculado de

e não de

(também acredito ter sido um descuido na edição).
Cleyson007 escreveu:Peguei o valor obtido (

) e multipliquei pelo valor representado em

(

.
Apenas cuidado, não teve interferência na conta mas, também há o fator

implícito no teorema, e dependendo da posição do

pode ser

, pois, escolhendo a coluna 2, pelo teorema de Laplace:
(chamemos a matriz de

)






E, de fato,

, como você já calculou.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A.] Está correto?
por Cleyson007 » Dom Mai 25, 2008 19:37
- 1 Respostas
- 3154 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 19:55
Progressões
-
- [Derivada] Esta correto o que eu fiz?
por carvalhothg » Ter Set 13, 2011 13:22
- 2 Respostas
- 1856 Exibições
- Última mensagem por thiago toledo

Ter Set 13, 2011 18:21
Cálculo: Limites, Derivadas e Integrais
-
- Também está correto?
por Cleyson007 » Qui Out 10, 2013 17:27
- 2 Respostas
- 1768 Exibições
- Última mensagem por Cleyson007

Sex Out 11, 2013 15:28
Geometria Analítica
-
- [Probabilidade] Está correto?
por KleinIll » Sex Out 25, 2013 15:45
- 2 Respostas
- 1959 Exibições
- Última mensagem por KleinIll

Sex Nov 29, 2013 00:31
Probabilidade
-
- Será que o meu raciocínio esta correto!?
por Evaldo » Qua Dez 30, 2009 12:12
- 1 Respostas
- 5270 Exibições
- Última mensagem por Neperiano

Sex Set 23, 2011 19:33
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.