• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressões

progressões

Mensagempor solon » Qui Jul 23, 2015 17:57

seja (a1, a2, ..., an) uma progressão geométrica com um número ímpar de termos e razão q>0. O produto de seus termos é igual a 2^25 e o termo do meio é 2^5. Se a soma dos (n-1) primeiros termos é igual a 2(1+q)(1+q^2), então :
a) a1 + q =16
b) a1 + q =12
c) a1 + q = 10
d) a1 + q + n = 20
e) a1 + q + n = 11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor solon » Qui Jul 30, 2015 20:03

Como n é ímpar, então o termo do meio é 〖 a〗_((n+1)/2).Digite a equação aqui.
A P.G. proposta é do tipo a_(1,) a_2, ..., a_((n+1)/2) , ..., a_n), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
a_((n+1)/2 =) √(a_1.a_(n ) ) → a_1.a_n =⁡〖(〖 a〗_((n+1)/2) )^2 〗 → a_1.a_n = (〖 2 〗^5 )^2 → a_1.a_n = 2^10
O produto dos n primeiros termos da P.G. (a_(1,) a_2, ..., a_((n+1)/2) , ..., n ), é dado por P_n= √((〖a_(1 ).a_n )〗^n ) .
Substituindo P_n por 2^25 e a_1. a_n por 2^10 , vem:
P_n = √((〖a_(1 ).a_n)〗^n ) →2^25 = √((〖〖2^10〗_ )〗^n ) → 2^25 = √((〖〖2^n〗_ )〗^10 ) → 2^25 =〖 (2 〗^n )^5 →
2^25 = 2^5n → 5n = 25 → n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ∙ ( 1 + q ) ∙ (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1∙ q^2 → a_1 = a_3/q^2 → a_(1 )= 32/q^2
Segue que:
S_4 = (a_1 ∙ ( q^4 -1 ))/(( q-1 )) → S_4 = (32 ∙ [(q^2 )^2 -1 ])/(q^2 ∙ (q-1)) → S_4 = (32 ∙(q^2-1) ∙ (q^2-1))/(q^2 ∙ (q-1) ) → S_4 = (32 ∙(q^2+ 1) ∙ (q+1) ∙ (q-1))/(q^2 ∙ (q-1) )
Substituindo S_4 por 2∙ (1+q)∙ (1+ q^2 ), vem:
2 ∙ (1+q)∙ (1+q^2 ) = (32 ∙ (q^2+ 1) ∙ (q + 1) ∙ (q - 1))/(q^2 ∙ (q -1) ) → 32/q^2 = 2 → q^2 = 16 → q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por: a_1 = 32/q^2 → a_1 = 32/q^2 → a_1 = 32/4^2 → a_1 = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor solon » Sáb Ago 01, 2015 03:48

Como n é ímpar, então o termo do meio é {a}_{\frac{n+1}{2}}.
A P.G. proposta é do tipo ({a}_{1},{a}_{2},...,{a}_{\frac{n+1}{2}},...,{a}_{n}), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:{a}_{\frac{n+1}{2}} = \sqrt[]{{a}_{1}.{a}_{n}}\rightarrow{a}_{1}.{a}_{n} = \left({\frac{n+1}{2}} \right)^{2}\rightarrow{a}_{1}.{a}_{n} = \left({2}^{5} \right)^{2}\rightarrow{a}_{1}.{a}_{n} = {2}^{10}
O produto dos n primeiros termos da P.G. ({a}_{1},{a}_{2},...,{a}_{\frac{n+1}{2}},...,{a}_{n}) , é dado por P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n}. .
Substituindo P_n por {2}^{25} e {a}_{1}.{a}_{n} por {2}^{10}, vem:
P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n} \rightarrow{2}^{25} = \sqrt[]{({2}^{10})^{n}}\rightarrow{2}^{25} = \sqrt[]{({2}^{n})^{10}}\rightarrow{2}^{25} = {2}^{5n}\rightarrow 5n = 25\rightarrow n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ∙ ( 1 + q ) ∙ (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1.{q}^{2}\rightarrow  a_1 = \frac{{a}_{3}}{{q}^{2}} \rightarrow{a}_{1} = \frac{32}{{q}^{2}}
Segue que:
{s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}
Substituindo{s}_{4} por 2.\left(1+q \right).\left(1+{q}^{2} \right)vem:
2.\left(1+q \right).\left(1+{q}^{2} \right) = \frac{32.\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow\frac{32}{{q}_{2}} = 2\rightarrow{q}^{2} = 16 → q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por:{a}_{1} = \frac{32}{{q}^{2}}\rightarrow{a}_{1} = \frac{32}{{4}^{2}}\rightarrow{a}_{1} = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.