por Leocondeuba » Ter Nov 05, 2013 22:03
Desculpem-me pelo meu erro, pois eu não sabia da regra sobre as imagens. Por isso, estou postando novamente a questão.
Olá a todos. Por favor, necessito da resolução desta questão, pois eu tentei resolvê-la e não consegui encontrar o raciocínio certo para me conduzir à alternativa correta. Agradeço desde já.
Sabendo-se que (x1, x2, x3) é uma progressão aritmética de razão 2 e que f:R ? R é uma função quadrática, tal que f(x1) = -2, f(x2) = =14 e f(x3) = -34, é correto afirmar que o coeficiente do termo de 2º grau da função f é igual a
01) 2 02) 1 03) 0,5 04) -1 05) -2
-
Leocondeuba
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mai 11, 2013 19:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Ter Nov 05, 2013 23:36
Dica :
Qual relação entre

? Por hipótese

é uma progressão aritmética de razão 2 , então

e

.
Lembre-se

é uma é uma progressão aritmética de razão

, então :

(...)

.
Se por hipótese

é uma função quadrática cuja imagem de

por

são respct.

, então suponha que

(onde ab,c são constantes a ser determinadas ) .
Agora basta resolver o sistema de equações :

.
Ou se preferir (como eu faria ) , determine

. Obterá algo do gênero

(OBS.: Não fiz a conta apenas verifiquei mentalmente o formato da expressão geral )
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Reta e Circunferência] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:05
- 0 Respostas
- 1001 Exibições
- Última mensagem por Leocondeuba

Ter Nov 05, 2013 22:05
Geometria Analítica
-
- [Plano Argand-Gauss] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:06
- 0 Respostas
- 1671 Exibições
- Última mensagem por Leocondeuba

Ter Nov 05, 2013 22:06
Números Complexos
-
- [Geometria Espacial Polinômios] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:08
- 1 Respostas
- 4101 Exibições
- Última mensagem por DanielFerreira

Dom Jan 31, 2016 21:33
Geometria Espacial
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 6014 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4604 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.