• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com Progressão Aritmética

Problema com Progressão Aritmética

Mensagempor joedsonazevedo » Sex Nov 09, 2012 11:49

Olá, a questão que estou desenvolvendo é a seguinte...

Uma revendedora de automóveis observou que, em determinado ano, a venda de veículos automáticos aumentava, mensalmente, segundo uma progressão aritmética de razão 50. Considerando-se que, em junho, foram vendidas
320 unidades, pode se afirmar que o numero de veículos automáticos comercializados pela revendedora,
nesse ano, foi igual a

01) 690
02) 1380
03) 2070
04) 4140
05) 8280

Resolvi da seguinte forma:

(r= 50) (a6= 320) (a12 e a1= ?)

descobrindo a12 pela formula geral
--> an = a1 + (n+1)r

a6 = a12 +(6-12).50
320 = a12 - 300
a12= 620

descobrindo a1:

a6 = a1 + (6-1).50
320 = a1 + 250
a1 = 30

Utilizei a formula da Soma de termos para saber a soma
dos valores de carros vendidos nos 12 meses...

--> Sn = (a1+an).n => (30+620).12 => Sn = 3900
..............2.................2

porém não confere com o resultado do gabarito... que é 4140
gostaria de ajuda na interpretação da questão ou no próprio cálculo...
______________________________________________Muito Obrigado!
______________________________________________Joedson Azevedo
____________________________________________________________
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Problema com Progressão Aritmética

Mensagempor young_jedi » Sex Nov 09, 2012 15:29

determine a1 pela formula

a_n=a_1+(n-1)r

a_6=a_1+(6-1).50

320=a_1+5.50

320=a_1+250

a_1=320-250=70

,para determinar a12 utilize a formula novamente

a_n=a_1+(n-1).r

a_{12}=70+(12-1).50

a_{12}=620

pela formula da soma

s_n=\frac{(a_1+a_n).n}{2}

s_n=\frac{(70+620).12}{2}

s_n=690.6=4140
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}