• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Matemática

Indução Matemática

Mensagempor MateusDantas1 » Dom Mar 04, 2012 13:00

Para cada n inteiro positivo, os números de Lucas L_n são definidos por:

L_{n+2}=L_{n+1}+L_n,          L_1=1,      L_0=2.

a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, onde a= (1+ \sqrt5) \div2 e b =(1-\sqrt5) \div2

b. Prove que a^{n-1}\sqrt5-(L_{n-1})\div(a)é um número de Lucas, para cada n>0

c. Prove que L_n + L_{n+3}=2L{n+2}, para todo n maior ou igual a 0.


Não tenho ideia de como se faz isso se alguém puder me ajudar, obrigado.
MateusDantas1
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Fev 16, 2012 14:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Indução Matemática

Mensagempor LuizAquino » Ter Mar 06, 2012 01:50

MateusDantas1 escreveu:Para cada n inteiro positivo, os números de Lucas L_n são definidos por:

L_{n+2}=L_{n+1}+L_n, L_1=1, L_0=2.

a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, ondea= (1+ \sqrt{5}) \div 2 e b =(1-\sqrt{5}) \div 2

b. Prove que a^{n-1}\sqrt{5}-(L_{n-1})\div(a) é um número de Lucas, para cada n>0

c. Prove que L_n + L_{n+3}=2L{n+2}, para todo n maior ou igual a 0.


MateusDantas1 escreveu:Não tenho ideia de como se faz isso


Primeiro, veja alguns números de Lucas:

L_0 = 2

L_1 = 1

L_2 = L_1 + L_0 = 1 + 2 = 3

L_3 = L_2 + L_1 = 3 + 1 = 4

L_4 = L_3 + L_2 = 4 + 3 = 7

L_5 = L_4 + L_3 = 7 + 4 = 11

E assim por diante.

MateusDantas1 escreveu:a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, onde a= (1+ \sqrt{5}) \div 2 e b =(1-\sqrt{5}) \div 2


Façamos n = 0.

Pela definição, temos que L_0 = 2.

Além disso, temos que:

a^0 + b^0 = \left(\dfrac{1+\sqrt{5}}{2}\right)^0 + \left(\dfrac{1-\sqrt{5}}{2}\right)^0 = 1 + 1 = 2

Sendo assim, temos que:

L_0 = a^0 + b^0

Ou seja, a relação é válida para n = 0.

Vamos supor que a relação é válida até n. Ou seja, vamos supor que:

L_n = a^n + b^n

Desejamos provar que ela será válida para n + 1. Isto é, desejamos provar que:

L_{n+1} = a^{n+1} + b^{n+1}

Vamos começar desenvolvendo L_{n+1} .

Usando a definição, temos que:

L_{n+1} = L_{n} + L_{n-1}

Usando a suposição de que a relação é válida até n, podemos dizer que:

L_{n+1} = a^n + b^n  + a^{n-1} + b^{n-1}

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n + \left(\dfrac{1-\sqrt{5}}{2}\right)^n + \left(\dfrac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\dfrac{1-\sqrt{5}}{2}\right)^{n-1}

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left[1 + \left(\dfrac{1+\sqrt{5}}{2}\right)^{-1}\right] + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left[1 + \left(\dfrac{1-\sqrt{5}}{2}\right)^{-1}\right]

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1+\sqrt{5}}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1-\sqrt{5}}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1+\sqrt{5}}\cdot \frac{1-\sqrt{5}}{1-\sqrt{5}}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1-\sqrt{5}}\cdot \frac{1+\sqrt{5}}{1+\sqrt{5}}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 - 2\sqrt{5}}{1^2 - \sqrt{5}^2}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 + 2\sqrt{5}}{1^2-\sqrt{5}^2}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{- 4 + 2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{-4 + 2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{- 2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{-2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{1 + \sqrt{5}}{2}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{1 - \sqrt{5}}{2}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\dfrac{1-\sqrt{5}}{2}\right)^{n+1}

= a^{n+1} + b^{n+1}

Em resumo, obtemos que:

L_{n+1} = a^{n+1} + b^{n+1}

Sendo assim, provamos por indução que para todo n maior ou igual a zero é válido que L_n=a^n + b^n , onde a = \dfrac{1+\sqrt{5}}{2} e b = \dfrac{1- \sqrt{5}}{2} .

Agora tente fazer os outros quesitos.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59