• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Para medir a altura de um poste...

Para medir a altura de um poste...

Mensagempor Lorrane12 » Ter Abr 24, 2012 12:30

Para medir a altura de um poste, fiz o seguinte: peguei um bastão de 3 metros e verifiquei que ele projetava uma sombra de 4 metros, enquanto o poste projetava uma sombra de 16 metros. Qual é a altura desse poste ?
Lorrane12
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 23, 2012 19:36
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Para medir a altura de um poste...

Mensagempor Cleyson007 » Ter Abr 24, 2012 12:35

Bom dia Lorrane!

Primeiramente, seja bem vinda ao Ajuda Matemática!

Por favor, monte um desenho para ver a semelhança das figuras, ok?

Em tese, seria:

3/4 = x/16

x=12 metros

"3 metros de comprimento está para 4m de sombra, assim como x metros de comprimento está para 16 metros de sombra".

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Para medir a altura de um poste...

Mensagempor Lorrane12 » Ter Abr 24, 2012 12:41

Obrigada. [:
Lorrane12
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 23, 2012 19:36
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}