• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação Trigonométrica na circunferência

Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Seg Abr 07, 2014 12:30

Gostaria de ajuda para resolver, não sei como fazer.
(UFRN)A figura abaixo é composta por dois eixos perpendiculares entre si, X e Y, que se intersectam no centro O de um círculo de raio 1, e outro eixo Z, paralelo a Y e tangente ao círculo no ponto P. A semi-reta OQ, com Q pertencente a Z, forma um ângulo a com o eixo Y. Podemos afirmar que o valor da medida do segmento PQ é:
a)sec ?
b)tg ?
c)cotg ?
d)cos ?

Gabarito: letra C
Obrigada.
Anexos
Figura Trigonometria.png
Figura da questão
Figura Trigonometria.png (13.36 KiB) Exibido 3796 vezes
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor e8group » Seg Abr 07, 2014 13:17

Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Ter Abr 08, 2014 08:56

santhiago escreveu:Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .



Muito obrigada pela ajuda. Achei meu erro.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)