• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação Trigonométrica na circunferência

Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Seg Abr 07, 2014 12:30

Gostaria de ajuda para resolver, não sei como fazer.
(UFRN)A figura abaixo é composta por dois eixos perpendiculares entre si, X e Y, que se intersectam no centro O de um círculo de raio 1, e outro eixo Z, paralelo a Y e tangente ao círculo no ponto P. A semi-reta OQ, com Q pertencente a Z, forma um ângulo a com o eixo Y. Podemos afirmar que o valor da medida do segmento PQ é:
a)sec ?
b)tg ?
c)cotg ?
d)cos ?

Gabarito: letra C
Obrigada.
Anexos
Figura Trigonometria.png
Figura da questão
Figura Trigonometria.png (13.36 KiB) Exibido 3848 vezes
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor e8group » Seg Abr 07, 2014 13:17

Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relação Trigonométrica na circunferência

Mensagempor Lana Brasil » Ter Abr 08, 2014 08:56

santhiago escreveu:Boa tarde . Antes de tudo , tente fazer um desenho transmitindo todas idéias do enunciado.

Fazendo o desenho , representando os eixos , os pontos , poderemos construir o triângulo retângulo em P ,certo ? De catetos OP = 1 e QP = ? e hipotenusa QO = ? .Ora ,se por hipótese "A semi-reta OQ, com Q pertencente a Z, forma um ângulo \alpha com o eixo Y" , então A semi-reta QP, com Q pertencente a Z , também forma um ângulo \alpha com o eixo Z , pois Z é paralelo a Y .

Agora em um t.retângulo , sabemos que tangente("de algum ang.") = tan("de algum ang.") = (cateto oposto)/(cateto adj.) [/tex] .Neste triângulo , trocamos "de algum ang." por \alpha , cateto oposto por [ex] QP [/tex] e o adj. por 1 . Substituindo na fórmula ,obterá o resultado .



Muito obrigada pela ajuda. Achei meu erro.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: