• Anúncio Global
    Respostas
    Exibições
    Última mensagem

valor numérico

valor numérico

Mensagempor Apotema » Seg Nov 23, 2009 08:23

Considerando que A=cos12°+cos25°+...+cos142°+cos155°+cos168°. Calculando-se o valor numérico de A, podemos afirmar que f(A)=1+2ª vale:
a){2}^{3.2}+1
b)3
c)2
d)-1
e)5
pensei o seguinte, se for o item a) o expoente de 2 tem uma multiplicação, então, subtraio os expoentes (3-2=1) qualquer número elevado a 1 é ele mesmo, então seria 2+1, cos12° para cos25° é 2.12+1=25, seria isso???? Mas vi que não se enquadra para cos 142°, vi que não se encaixa na função f(A)=1+2ª. Percebi que em A em uma constante que soma 13, 12+13=25, 142+13=155, 155+13=168.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: valor numérico

Mensagempor Elcioschin » Seg Nov 23, 2009 12:53

Some o primeiro com o último e use a fórmula de transformação de soma em produto:

cos12º + cos168º = 2*cos[(168º + 12º)/2]*cos[(168º - 12º)/2]

cos12º + cos168º = 2*cos[180º/2]*cos[156º/2]

cos12º + cos168º = 2*cos[90º]*cos[78º] ----> cos90º = 0 ----> cos12º + cos168º = 0

Logo, todas a saomas são nulas ----> A = 0

f(A) = 1 + 2^A ----> f(A) = 1 + 2^0 ----> f(A) = 1 + 1 ----> f(A) = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: valor numérico

Mensagempor Apotema » Seg Nov 23, 2009 13:57

Elcioschin escreveu:Some o primeiro com o último e use a fórmula de transformação de soma em produto:

cos12º + cos168º = 2*cos[(168º + 12º)/2]*cos[(168º - 12º)/2]

cos12º + cos168º = 2*cos[180º/2]*cos[156º/2]

cos12º + cos168º = 2*cos[90º]*cos[78º] ----> cos90º = 0 ----> cos12º + cos168º = 0

Logo, todas a saomas são nulas ----> A = 0

f(A) = 1 + 2^A ----> f(A) = 1 + 2^0 ----> f(A) = 1 + 1 ----> f(A) = 2

Não entendi quando vc afirma f(a)=1+2^0 , pq 2^0=1?
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: valor numérico

Mensagempor Elcioschin » Seg Nov 23, 2009 18:33

2^0 = 2^(1- 1)

2^0 = (2^1)*[2^(-1)]

2^0 = 2^1/2^1

2^0 = 2/2

2^0 = 1
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59