por adauto martins » Sáb Jul 03, 2021 16:28
(EsTE/ITA-1947)a cotangente de um angulo sendo
![1+\sqrt[]{2} 1+\sqrt[]{2}](/latexrender/pictures/63700792f877bb0654c4f00c7dd30502.png)
,calcular
a secante do dobro desse angulo.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sáb Jul 03, 2021 18:39
soluçao
temos que
![cotgx=1/tgx\Rightarrow tgx=1/cotgx=1/(1+\sqrt[]{2}) cotgx=1/tgx\Rightarrow tgx=1/cotgx=1/(1+\sqrt[]{2})](/latexrender/pictures/e9e01a1373ea3ef1951c3a3f6630bc7e.png)
racionalizando teremos
![tgx=(1/(1+\sqrt[]{2}).((1-\sqrt[]{2})/(1-\sqrt[]{2})\Rightarrow
tgx=\sqrt[]{2}-1 tgx=(1/(1+\sqrt[]{2}).((1-\sqrt[]{2})/(1-\sqrt[]{2})\Rightarrow
tgx=\sqrt[]{2}-1](/latexrender/pictures/cfed1db33e8be15023153478412db4ac.png)
temos que
![sec^2(2x)=1+tg^2(2x)=1+(tg(x+x))=1+((tgx+tgx)/(1-tg^2x))
sec^2(2x)=1+(2tgx/(1-tg^2x)=1+(2.(\sqrt[]{2}-1)/1-(\sqrt[]{2}-1)^2)=... sec^2(2x)=1+tg^2(2x)=1+(tg(x+x))=1+((tgx+tgx)/(1-tg^2x))
sec^2(2x)=1+(2tgx/(1-tg^2x)=1+(2.(\sqrt[]{2}-1)/1-(\sqrt[]{2}-1)^2)=...](/latexrender/pictures/247e0bc41c47b82b49622e989b200384.png)
calculando a expressao teremos
![sec(2x)=(+/-)\sqrt[]{...}) sec(2x)=(+/-)\sqrt[]{...})](/latexrender/pictures/bd2fbdd26cd3302611d05c25535f7e8f.png)
termine-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Jul 04, 2021 13:01
uma correçao

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 19937 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 18343 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 8842 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 4384 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 8998 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.