• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Dúvida em relação a arcos duplos.

[Trigonometria] Dúvida em relação a arcos duplos.

Mensagempor Antonio Unwisser » Dom Set 28, 2014 16:39

Boa tarde, pessoal.
Simplesmente não consigo resolver exercícios que propõem que se ache o resultado de uma determinada operação a partir do resultado de outra.
Por exemplo:

Sabendo que
cossec x/sec x + sec x/cossec x = 5, o valor de {\left(sen x + cos x \right)}^{2} é:

Ou então:
Se tg x + cotg x = 3, calcule sen 2x.

Estou com todas as identidades (cossec x = 1/sen x; etc.) em mente, bem como as fórmulas derivadas da Relação Fundamental, e também mantendo em mente que
sen 2x = 2senx.cosx, e cos 2x = {cos}^{2} - {sen}^{2}x, e as outras que se derivam a partir daí, bem como as da tangente.

Mas obviamente há alguma relação que não consigo enxergar. Qualquer ajuda será muito bem-vinda.
Obrigado pela atenção.
Antonio Unwisser
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Ago 30, 2014 20:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Filosofia
Andamento: cursando

Re: [Trigonometria] Dúvida em relação a arcos duplos.

Mensagempor e8group » Dom Out 05, 2014 21:42

Não há uma regra geral p/ resolver estes tipos de equações , e destes casos expostos o objetivo não é resolver a eq. primeiro p/ x e depois computar sin 2x , etc ...A ideia é reescrever estas equações em termos de sin 2x ou de sin x + cos x .. Veremos como isto é possível ...

Vou propor uma equação , escolha algum número real k (a princípio sem restrições ) , fixado a escolha seja a eq.


tan x + cot x = k . Se você fizer k = 5 e depois igual 3 você terá exatamente as duas equações que expôs (certifique-se que o primeiro membro da 1ª eq. é o mesmo que o escrever tan x + cot x .) .

Agora note que tan x = \frac{sin x}{cos x}  , cot x =  \frac{cos x}{sin x} .



Daí ,

tan x + cot x = \frac{sin x}{cos x} +  \frac{cos x}{sin x} = k . Ou ainda ,

\frac{sin^2 x +  cos ^2 x} {sin x cos x } =  k .Mas

sabemos da relação trigonométrica que sin^2 x +  cos ^2 x = 1 e também que sin 2x = 2 sin x cos x . Assim ,


tan x + cot x  = \frac{sin^2 x +  cos ^2 x} {sin x cos x }  = \frac{1}{sinx cos x} = \frac{2}{2sinx cos x} =  \frac{2}{sin 2x} o que implica

sin 2x = \frac{2}{k} . Segue daí que podemos escolher qualquer k maior ou igual a 2 em módulo (pois seno é limitado por 1) .

Em particular , com k = 5 , tem a resposta desejada . Agora p/ computar (sinx + cos x)^2 note que

(sinx + cos x)^2  = \underbrace{sin^2 x + cos^2x }_{1} + \underbrace{2 cos x sin x }_{sin 2x} }  =  1 +  \frac{2}{k}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trigonometria] Dúvida em relação a arcos duplos.

Mensagempor Antonio Unwisser » Seg Out 06, 2014 19:43

Muitíssimo obrigado, santhiago. :y: :)
Antônio.
Antonio Unwisser
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Ago 30, 2014 20:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Filosofia
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.