• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Seno

Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 16:06

Estou com dificuldades para resolver esse questão. Se poderem me ajudar, ficarei grata.
Questão foto1
Anexos
1405620184821.jpg
Ajudeeem
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando

Re: Função Seno

Mensagempor Russman » Qui Jul 17, 2014 22:25

Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 22:34

Russman escreveu:Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)