• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função

função

Mensagempor Apotema » Seg Nov 23, 2009 16:02

se sen\alpha=\frac{1}{3}, então o valor de sen(25\pi+\alpha)-sen(88\pi-\alpha):
fiz a equivalência de sen 30°=1/2, mas não cheguei a lugar algum.
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: função

Mensagempor thadeu » Seg Nov 23, 2009 18:33

Primeiro, utilize as propriedades:

sen(a+b)=sena\,cosb+senb\,cosa\\sen(a-b)=sena\,cosb-senb\,cosa

sen(25 \pi+ \alpha)=sen25 \pi\,cos \alpha+sen \alpha\,cos 25 \pi

Lembra do exercício passado??? No ciclo trigonométrico 25 \pi=12(2 \pi)+ \pi, ou seja, são 12 voltas completas mais "meia volta" (\pi); logo cos 25 \pi= cos \pi=-1\,\,\,e\,\,\,sen25 \pi=sen \pi=0

Substituindo na 1ª parte da expressão:

sen(25 \pi+ \alpha)=sen \pi\,cos \alpha+sen \alpha\,cos \pi=(0)\,cos \alpha+sen \alpha (-1)=-sen \alpha

Na 2ª parte da expressão temos

sen(88 \pi- \alpha)=sen88 \pi\,cos \alpha-sen \alpha\,cos88 \pi

88 \pi=44(2 \pi), que são 44 voltas completas, logo,sen88 \pi=sen 0=0\,\,\,e\,\,\,cos88 \pi=cos0=1

Substituindo na 2ª parte da expressão:

sen(88 \pi- \alpha)=sen0\,cos \alpha+sen \alpha\,cos0=0+sen \alpha\,(1)=sen \alpha


O resultado de expressão completa é:

sen(25 \pi+ \alpha)-sen(88 \pi- \alpha)=-sen \alpha-sen\alpha=-2\,sen \alpha=-2\,(\frac{1}{3})=-\frac{2}{3}
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: função

Mensagempor Apotema » Ter Nov 24, 2009 07:50

thadeu escreveu:Primeiro, utilize as propriedades:

sen(a+b)=sena\,cosb+senb\,cosa\\sen(a-b)=sena\,cosb-senb\,cosa

sen(25 \pi+ \alpha)=sen25 \pi\,cos \alpha+sen \alpha\,cos 25 \pi

Lembra do exercício passado??? No ciclo trigonométrico 25 \pi=12(2 \pi)+ \pi, ou seja, são 12 voltas completas mais "meia volta" (\pi); logo cos 25 \pi= cos \pi=-1\,\,\,e\,\,\,sen25 \pi=sen \pi=0

Substituindo na 1ª parte da expressão:

sen(25 \pi+ \alpha)=sen \pi\,cos \alpha+sen \alpha\,cos \pi=(0)\,cos \alpha+sen \alpha (-1)=-sen \alpha

Na 2ª parte da expressão temos

sen(88 \pi- \alpha)=sen88 \pi\,cos \alpha-sen \alpha\,cos88 \pi

88 \pi=44(2 \pi), que são 44 voltas completas, logo,sen88 \pi=sen 0=0\,\,\,e\,\,\,cos88 \pi=cos0=1

Substituindo na 2ª parte da expressão:

sen(88 \pi- \alpha)=sen0\,cos \alpha+sen \alpha\,cos0=0+sen \alpha\,(1)=sen \alpha


O resultado de expressão completa é:

sen(25 \pi+ \alpha)-sen(88 \pi- \alpha)=-sen \alpha-sen\alpha=-2\,sen \alpha=-2\,(\frac{1}{3})=-\frac{2}{3}

Obrigadíssima
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}