• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações trigonométricas

Relações trigonométricas

Mensagempor Jhennyfer » Qui Abr 25, 2013 13:51

oi, preciso de uma mãozinha...

A expressão mais simples para 1+\frac{1}{cos²x.cossec²x}-sec²x é:

iniciei resolvendo assim, inverso de cosseno é secante, e inverso de cossecante é seno, portanto:

1+sec²x.sen²x-sec²x

Agora não consigo resolver a parte da multiplicação sec²x.sen²x, se é que está certo!
esse  não sei pq está aparecendo na formula, se isto estiver errado desconsidere. obg ;)
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor e8group » Qui Abr 25, 2013 15:32

Você pensou corretamente sobre a questão .Entretanto ,note que 1 + sec^2(x)sin^2(x) = sec^2(x) (Por quê ?) .Assim ,

1 + sec^2(x)sin^2(x) - sec^2(x)  =  0 .

Observações :
i)
Lembrando que cos^2(x) + sin^2(x) = 1 ( identidade trigonométrica fundamental)

Pergunta :

O que acontece se dividirmos cada lado da igualdade por cos^2(x) ou se multiplicarmos ambos lados da igualdade por sec^2(x) ?

ii)

Para digitar expressões do tipo a² + b² em \LaTeX o correto é digitar a^2 +b^2 entre .

Compare os resultados :

a² + b² produz a² + b² em \LaTeX

a^2 +b^2 produz a^2 +b^2 em \LaTeX
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor Jhennyfer » Qui Abr 25, 2013 16:07

eu entendi, mas não to conseguindo terminar a questão =/
a resposta é 0

o que eu faço depois de

1+sec²x.sen²x-sec²x=0

?????????
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor e8group » Qui Abr 25, 2013 16:30

O que deverá fazer é responde a pergunta que fiz na observação ,isto é , \frac{sin^2(x) + cos^2(x)}{cos^2(x)} = \frac{1}{cos^2(x)} que é equivalente a sec^2(x) (sin^2(x) + cos^2(x)) =  1 + sec^2(x)sin^2(x) = 1 + tan^2(x)= sec^2(x) . Daí ,
1 + sec^2(x)sin^2(x)  - sec^2(x) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.