• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Circulares inversas 2

Função Circulares inversas 2

Mensagempor Fernanda90 » Qui Ago 27, 2009 16:52

Oi gente! Há alguns dias estou entrando no site já e os tópicos já postados me ajudaram muito!
Bom, lá vão as minhas duas dúvidas:

1) Sabendo que t pertence ao 1º quadrante e arc sen (x) = t, então tg t é igual a:

2) O conjunto domínio de f(x) = arc sen (2x - 3) está contido no intervalo?

Essa segunda tentei resolver pela variação do domínio de sen (x) mas não deu certo...

Se alguém puder me ajudar eu agradeço!

Fernanda.
Fernanda90
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 27, 2009 16:43
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulanda
Andamento: formado

Re: Função Circulares inversas 2

Mensagempor Elcioschin » Qui Ago 27, 2009 20:18

1) arcsen(x) = t -----> sen(t) = + x ---> sen²(t) = x² ----> cos²(t) = 1 - x² ----> cos(t) = +V(1 - x²) ----> 1º quadrante

tg(t) = sen(t)/cos(t) -----> tg(t) = + x/V(1 - x²)


2) f(x) = arcsen(2x - 3) ------> A função seno está compreendida entre -1 e +1

- 1 =< 2x - 3 =< + 1 -----> 3 - 1 =< 2x =< 3 + 1 ----> +2 =< 2x =< +4 -----> +1 =< x =< +2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Função Circulares inversas 2

Mensagempor Fernanda90 » Qui Ago 27, 2009 20:25

Brigadão! Entendi certinho!!
Fernanda90
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 27, 2009 16:43
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulanda
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59