por Thulio_Parazi » Ter Abr 10, 2012 09:55
Como resolver a expressão sen²2x + cos²4x=1
sen²2x=[sen(x + x)]²=[2*senx*cosx]²=4*sen²x*cos²x
Mas não consegui obter resultado na Expressão cos²4x e não conseuir provar a equação acima.
-
Thulio_Parazi
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Qui Abr 05, 2012 11:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cefet-mg 2012 log
por Thulio_Parazi » Ter Abr 10, 2012 14:37
- 5 Respostas
- 3550 Exibições
- Última mensagem por Thulio_Parazi

Qui Abr 12, 2012 09:26
Logaritmos
-
- Questão CEFET-MG 2012
por Thulio_Parazi » Qui Abr 05, 2012 13:48
- 5 Respostas
- 4612 Exibições
- Última mensagem por fraol

Ter Abr 10, 2012 20:02
Trigonometria
-
- Cefet-mg 2012 questão 03
por Thulio_Parazi » Sex Abr 13, 2012 11:12
- 4 Respostas
- 4320 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 22:26
Logaritmos
-
- Questão CEFET-MG graduação 2012
por Thulio_Parazi » Qui Abr 05, 2012 11:24
- 1 Respostas
- 2036 Exibições
- Última mensagem por fraol

Sex Abr 06, 2012 20:54
Trigonometria
-
- cefet-mg
por Thulio_Parazi » Ter Abr 10, 2012 10:06
- 2 Respostas
- 2313 Exibições
- Última mensagem por Thulio_Parazi

Seg Abr 16, 2012 11:50
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.