• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[trigonometria]

[trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 12:07

Considerando-se que a equação senx.cosx=\frac{\sqrt[2]{3}}{4}} tem n soluções no intervalo [0,2\Pi], pode-se afirmar que o valor de n é:


bom, eu tentei elevar os dois lados ao quadrado já, mas não fechou..
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 21:40

Bom, uma dica pra resolver esse tipo de exercício, onde você tem senx . cosx em um dos membros é se lembrar das relações de Arco Duplo, mais especificamente dessa aqui:

sen (2x) = 2.senx.cosx

Pensa em como utilizar isso no exercício em questão, você vai acabar chegando a uma expressão bem mais simples do que se elevasse os dois membros ao quadrado e utilizasse {sen}^{2}x + {cos}^{2}x = 1 para deixar toda a expressão em função do seno ou cosseno

Espero ter ajudado.
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando

Re: [trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 22:01

na verdade, eu não consigo ver como a fórmula do arco duplo pode me ajudar..:S
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 22:09

A expressão é a seguinte:

senx . cosx = \sqrt[2]{3}/4

Multiplicando os dois membros da equação por 2 obtem-se:

2.senx . cosx = \sqrt[2]{3}/2

Sabe-se que sen(2x) = 2.senx.cosx, portanto:

sen(2x) = \sqrt[2]{3}/2

Agora que temos toda a expressão em função apenas do seno é só resolver normalmente e encontrar as soluções contidas no intervalo especificado, lembrando que as soluções da equação são os valores de x e não de 2x.

Esperto ter ajudado
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?