por Pre-Universitario » Ter Ago 09, 2011 18:00
Um rapaz observa o topo de um predio sob uma ngulo de 60 Graus.
Depois, se afasatando 100m vendo o predio sob um agulo agora de 30 Graus.
Qual a altura do predio.
Obs: a resposta ñ e em metros
Bom ! eu fiz e refiz essa questão varias veses mas ñ consegui achar o
resultado
quem poder fazer eu agradeço !
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por LuizAquino » Ter Ago 09, 2011 19:34
Esse exercício é análogo ao outro que você enviou no tópico:
[altura do prédio] A resposta esta correta ?viewtopic.php?f=109&t=5563Qual foi exatamente a sua dificuldade? Em que unidade de comprimento está exibida a resposta?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Pre-Universitario » Qua Ago 10, 2011 15:41
bom !
eu faço exatamente como o outro mas não consigo
achar essa resposta
![50\sqrt[]{3} 50\sqrt[]{3}](/latexrender/pictures/a83891c2a3a81fce40dac1276923bf36.png)
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por LuizAquino » Qui Ago 11, 2011 19:39
O exercício pode ser simplificado na figura abaixo. No caso, a altura do observador foi ignorada.

- altura_do_prédio.png (3.9 KiB) Exibido 1278 vezes
Podemos então escrever o sistema:

Isso é o mesmo que:

Da primeira equação, temos que

.
Podemos então reescrever a segunda equação como

. Resolvendo essa equação, obtemos

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.