• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exponenciais

Exponenciais

Mensagempor Souo » Sáb Jun 20, 2015 14:45

Se 2^{x+1} - 2^{3-x} = 6, ent?o {x}^{2}+20 vale:




N?o consegui fazer.
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exponenciais

Mensagempor Cleyson007 » Dom Jun 21, 2015 09:20

Bom dia Souo!

Sou professor de Matemática e, caso queira conhecer melhor o meu trabalho fica o contato: viewtopic.php?f=151&t=13614

Quanto a sua dúvida:

Faça 2^x=y

Dessa forma, temos:

2y-\left(\frac{8}{y} \right)=6

Resolver essa equação em "y" é muito simples (caíra numa equação do 2° grau com raízes 4 e -1). Repare que a raiz y = -1 não satisfaz o problema.

Como 2^x=y, temos que x = 2.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}