• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Expon.

Função Expon.

Mensagempor apotema2010 » Seg Mar 08, 2010 09:49

Se (5 elevado a 3y)=64, valor de 5 elevado a -y é?
Como resolvo se a base não é a mesma, uma base é 5 e 64 não é primo de 5?
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função Expon.

Mensagempor Molina » Seg Mar 08, 2010 16:21

Boa tarde.

5^{3y}=64

5^{3y}=2^6

(5^{y})^3=(2^2)^3

5^{y}=4

(5^{y})^{-1}=4^{-1}

5^{-y}=\frac{1}{4}

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função Expon.

Mensagempor apotema2010 » Ter Mar 09, 2010 10:19

Obrigada.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.