• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) inequação logaritmica

(ESPCEX) inequação logaritmica

Mensagempor natanskt » Sex Out 29, 2010 10:42

o conjunto solução da inequação (\frac{1}{2})^{x-3} \leq \frac{1}{4} é:
a-)[5, \infty[
b-)[4, \infty[
C-)]\infty , 5]
D-){x e R / X \leq -5
E-){x e R / X \geq -5
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) inequação logaritmica

Mensagempor nakagumahissao » Seg Abr 30, 2012 21:36

{\left(\frac{1}{2} \right)} ^{x - 3} \leq \frac{1}{4}\Rightarrow(x - 3) log(\frac{1}{2}) \leq log(\frac{1}{4})\Rightarrow

\Rightarrow x-3  \leq \frac{log 1 - log 4}{log 1 - log 2} \Rightarrow x \leq 3 + \frac{log 1 - log 4}{log 1 - log 2} \Rightarrow

\Rightarrow x \leq \frac{3 log 1 - 3 log 2 + log 1 - 2 log 2}{log 1 - log 2} \Rightarrow x \leq \frac{4 log1 - 5log2}{log 1 - log 2} \Rightarrow

\Rightarrow x \leq \frac{-5log2}{-log 2} \Rightarrow x \geq 5

Pois log 1 = 0.

Portanto, a resposta é:

x \in \Re : x \geq 5

A resposta é a opção [a]
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.