• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cefet-mg 2012 questão 03

Cefet-mg 2012 questão 03

Mensagempor Thulio_Parazi » Sex Abr 13, 2012 11:12

O conjunto-imagem de f(x) = \frac{{e}^{x}+ {e}^{-x}}{2} , denominado cosseno hiperbólico é :
Como eu faço para resolver esse tipo de questão?
Resolvo utilizando logaritmo? E o que é cosseno hiperbólico?
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Cefet-mg 2012 questão 03

Mensagempor fraol » Sex Abr 13, 2012 20:52

As imagens de e^x e de e^{-x} são os reais maiores do que 0, (0, +\infty), e portanto uma função que seja a soma de e^x com e^{-x} também é maior do que 0, (0, +\infty).

Para determinar o intervalo real da imagem você precisa determinar qual é o menor valor da função.

Agora, uma dica: e^x e e^{-x} são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.

Veja se consegue continuar a resolver a questão.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Cefet-mg 2012 questão 03

Mensagempor Thulio_Parazi » Seg Abr 16, 2012 09:29

fraol escreveu:As imagens de e^x e de e^{-x} são os reais maiores do que 0, (0, +\infty), e portanto uma função que seja a soma de e^x com e^{-x} também é maior do que 0, (0, +\infty).

Para determinar o intervalo real da imagem você precisa determinar qual é o menor valor da função.

Agora, uma dica: e^x e e^{-x} são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.

Veja se consegue continuar a resolver a questão.

.


Não entendi nada e não consigui resolver não.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Cefet-mg 2012 questão 03

Mensagempor Thulio_Parazi » Seg Abr 16, 2012 09:33

Não entendi nada e não consigui resolver não.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Cefet-mg 2012 questão 03

Mensagempor fraol » Qua Abr 18, 2012 22:26

Vimos no começo da minha postagem que a imagem da soma das funções são os reais positivos. Estamos querendo saber se há alguma restrição nesse conjunto. Então resolvemos analisar o menor valor da função. Procurei um caminho intuitivo - poderíamos ir por caminhos mais formais, mas não é necessário aqui. Então vamos continuar:

Agora, uma dica: e^x e e^{-x} são inversos um do outro e o menor valor da soma de um número com o seu inverso ocorre quando esse número é igual a 1.


Por exemplo, 2 + \frac{1}{2} = 2.5 , 3 + \frac{1}{3} \approx 9.3 e assim por diante. Ou seja o menor valor da soma de um número por seu inverso ocorre quando o número é igual a 1.

Assim e^x deve ser igual a 1 => e^x = 1 \iff x = 0.

Com isto sabemos que o menor da função dada ocorre para x = 0.

Substituindo esse x na função original:

f(x) = \frac{e^x + e^{-x}}{2} => f(0) = \frac{e^0 + e^{-0}}{2} = \frac{1+1}{2} = 1.

Com isso a imagem da função é o conjunto dos números reais maiores do que ou igual a 1, isto é o conjunto [1, \infty) .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?