Em 1950, as populações de Toquio e de Nova Iorque eram de 7 e 12,6 milhões de habitantes, respectiva-
mente. Em 1974, as populações de Toquio e de Nova Iorque passaram para 20 e 16 milhões de habitantes,
respectivamente. Admitindo-se que o crescimento populacional dessas cidades foi linear no perodo 1950-
1974, determine o ano em que as duas cidades ficaram com a mesma população.

representa a quantidade de habitantes no ano
, então
.
, e de Nova Iorque,
, e,com isso, reduzimos o problema a determinação das constantes
e
. Para simplificar as contas utilizarei a unidade de população 
.
.
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.