por Rafael16 » Sex Jul 06, 2012 12:43
Olá pessoal, não consegui resolver essa inequação

Minha resolução foi a seguinte:

Para(I)


cheguei nesse resultado
Colocando na reta real achei x < -2
Para(II)


cheguei nesse resultado
Colocando na reta real achei

Fazendo a intersecção (I ? II) achei como solução S=

Resposta certa: {x ? ?|x?0 e x ? -2}
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Russman » Sex Jul 06, 2012 17:24
Ok, pense assim:
Faça

.
Se

, então

e portanto

.
Agora,

Como a segunda afirmação é verdadeira, então
![S = (-\infty, -2)\cup (-2 ,0]= \left \{ x \in \mathbb{R} \setminus -2 \neq x \leq 0 \right \} S = (-\infty, -2)\cup (-2 ,0]= \left \{ x \in \mathbb{R} \setminus -2 \neq x \leq 0 \right \}](/latexrender/pictures/c46b9f026e79a7f913caeef4b33be544.png)
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação quociente
por Bruno Pinheiro » Ter Dez 28, 2010 01:12
- 3 Respostas
- 2946 Exibições
- Última mensagem por MarceloFantini

Qua Dez 29, 2010 10:45
Álgebra Elementar
-
- Inequação Quociente
por MERLAYNE » Qua Mai 09, 2012 11:08
- 2 Respostas
- 1590 Exibições
- Última mensagem por DanielFerreira

Qua Mai 09, 2012 22:48
Sistemas de Equações
-
- Inequação Quociente
por Luis_Hgl » Qua Fev 27, 2013 13:18
- 1 Respostas
- 3053 Exibições
- Última mensagem por young_jedi

Sex Mar 01, 2013 23:13
Inequações
-
- Inequação-quociente
por Celma » Dom Jul 21, 2013 11:42
- 6 Respostas
- 3731 Exibições
- Última mensagem por Celma

Seg Jul 22, 2013 19:15
Inequações
-
- inequação produto/quociente
por vhcs29 » Qui Abr 01, 2010 12:32
- 2 Respostas
- 5191 Exibições
- Última mensagem por vhcs29

Sex Abr 02, 2010 12:59
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.