• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor Rafael16 » Qui Mar 08, 2012 20:24

Boa noite galera!

Resolvi a seguinte inequação, mas a resposta está errada de acordo com meu livro:

\left|\frac{x - 1}{x - 2} \right| < 3

1ª inequação

\frac{x - 1}{x - 2}  < 3

\frac{x - 1}{x - 2} - 3 < 0

Resolvendo isso, ficou assim:

\frac{-2x + 5}{x - 2} < 0

Depois disso, tirei a raiz do numerador e do denominador para ver quais valores de x satisfaz essa inequação.


Agora resolvendo:

2ª inequação

\frac{x - 1}{x - 2} > -3

\frac{x - 1}{x - 2} + 3 > 0

dando:

\frac{4x - 7}{x - 2} > 0

Depois disso, tirei a raiz do numerador e do denominador para ver quais valores de x satisfaz essa inequação.

Depois de ter tirado as raízes das duas inequações, joguei na reta a 1ª inequação para saber os valores de x para que a inequação seja menor que 0, e fazendo o mesmo para a 2ª inequação, só que dessa vez para achar os valores de x para que seja maior que 0.
E em seguida, coloquei as retas das duas inequações paralelas para fazer a intersecção para achar os valores de x para satisfazer as duas inequações.
E minha resposta foi:
S = {x ? ?| x < \frac{7}{4} ou x > \frac{5}{2}

A resposta do meu livro é:
S = {x ? ?| x < \frac{7}{4} ou x > 2}

Valeu gente!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Modular

Mensagempor LuizAquino » Qui Mar 08, 2012 21:12

Rafael16 escreveu:Resolvi a seguinte inequação, mas a resposta está errada de acordo com meu livro:

\left|\frac{x - 1}{x - 2} \right| < 3


Rafael16 escreveu:1ª inequação

\frac{x - 1}{x - 2} < 3

\frac{x - 1}{x - 2} - 3 < 0

Resolvendo isso, ficou assim:

\frac{-2x + 5}{x - 2} < 0


A inequação será essa apenas quando \frac{x - 1}{x - 2} \geq 0 (o que significa que \left|\frac{x - 1}{x - 2} \right| = \frac{x - 1}{x - 2} ). Desse modo, você tem um sistema de inequações:

\begin{cases}
\dfrac{x - 1}{x - 2} \geq 0 \\
\\
\dfrac{-2x + 5}{x - 2} < 0
\end{cases}

Resolvendo esse sistema, você obtém a solução S_1 .

Rafael16 escreveu:Agora resolvendo:

2ª inequação

\frac{x - 1}{x - 2} > -3

\frac{x - 1}{x - 2} + 3 > 0

dando:
\frac{4x - 7}{x - 2} > 0


A inequação será essa apenas quando \frac{x - 1}{x - 2} < 0 (o que significa que \left|\frac{x - 1}{x - 2} \right| = -\frac{x - 1}{x - 2} ). Desse modo, você tem um sistema de inequações:

\begin{cases}
\dfrac{x - 1}{x - 2} < 0 \\
\\
\dfrac{4x - 7}{x - 2} > 0
\end{cases}

Resolvendo esse sistema, você obtém a solução S_2 .

Dessa forma, a solução final da inequação original será S = S_1 \cup S_2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular

Mensagempor Rafael16 » Qui Mar 08, 2012 21:21

Obrigado LuizAquino :-D
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D