• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questões de Exame

Questões de Exame

Mensagempor joaofonseca » Qui Dez 22, 2011 21:27

Nas últimas semanas comecei a resolver questões de funções dos Exames Nacionais de ensino secundário.
Em relação a este exame, não consegui encontrar uma proposta de resolução.Por isso decidi postar aqui as questões resolvidas por mim, para que alguém possa verificar se estão bem resolvidas.

quest#4.jpg


Esta questão é uma aplicação da definição de limite segundo Heine.
Obeservando a função f verificamos que o 2 é o ponto critico. Por isso \lim u_{n}=2

Calculando os limites laterais quando x \to 2 concluimos que \lim_{x \to 2^+}f(x)=3.

Assim \lim u_{n}=2^+ quando n \to +\infty
A resposta é a B.

quest#6.jpg


Aqui trata-se de calcular a I derivada de g no ponto x=1 para depois encontrar a equação da reta tangente.

g'(x)=(2x-1)' \cdot f(x)+(2x-1) \cdot f'(x)
g'(x)=2 \cdot f(x)+(2x-1) \cdot f'(x)

Agora resta encontrar g'(1)

g'(1)=2 \cdot f(1)+1 \cdot f'(1)
g'(1)=2 \cdot 1+1 \cdot 1
g'(1)=3

Concluimos daqui que o declive da reta tangente de g no ponto x=1 é 3. Agora falta a ordenada na origem.
Pelo enunciado sabemos a expressão analitica de g, então g(1)=(2 \cdot 1-1) \cdot 1. Porque f(1)=1.
Assim g(1)=1.
Agora temos par ordenado (1,1) que basta substituir em y=3x+b e resolver em ordem a b.
A resposta é a A.

Este exame tem mais questões de funções, probabilidades e complexos.Em anexo esta o exame completo
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}