por nathyn » Seg Nov 21, 2011 11:08
Determine m de modo que o número 1 esteja compreendido entre as raízes da equação:
(m²-1)x²+(m-3)x+m+1=0
Bom, eu fiz da seguinte maneira:
(m²-1).f(1)<0 para estar entre as raízes, então:
f(1)=(m²-1)+(m-3)+m+1, então...
(m²-1).(m²+2m-3)<0 encontrei:
m^4+2m³-4m²-2m+3<0
Não sei se até ai está certo, mas se tiver gostaria de saber como eu desenvolvo esse resto, pq ainda não sei polinomios...
Me ajudem ae por favor. Brigada... -)
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Ter Nov 22, 2011 10:30
nathyn escreveu:Determine m de modo que o número 1 esteja compreendido entre as raízes da equação:
(m²-1)x²+(m-3)x+m+1=0
nathyn escreveu:Bom, eu fiz da seguinte maneira:
(m²-1).f(1)<0 para estar entre as raízes, então:
f(1)=(m²-1)+(m-3)+m+1, então...
(m²-1).(m²+2m-3)<0 encontrei:
m^4+2m³-4m²-2m+3<0
No penúltimo passo, você não deve aplicar a distributiva. O que você deve fazer é:
(i) analisar o sinal de m² - 1;
(ii) analisar o sinal de (m² + 2m -3);
(iii) por fim, analisar o sinal do produto entre (i) e (ii).
ObservaçãoEu recomendo que você revise o assunto:
Inequação Produto - Brasil Escolahttp://www.brasilescola.com/matematica/ ... duto-1.htm
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por nathyn » Ter Nov 22, 2011 13:45
Aaah obrigadaoo!! Bem mais fácil =DD
Eu fiz assim e encontrei o quadro de sinais o seguinte...
____-3____-1_____1______
+ | + 0 - 0 +
+ 0 - | - 0 +
+ | - | + | -
Então a solução é -3<m<-1, mas no gabarito diz -3<m<x
Se alguem puder me explicar ficarei grata. =)
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Ter Nov 22, 2011 14:52
nathyn escreveu:____-3____-1_____1______
+ | + 0 - 0 +
+ 0 - | - 0 +
+ | - | + | -
Então a solução é -3<m<-1, mas no gabarito diz -3<m<x
Apenas corrigindo o seu quadro:
____-3____-1_____1______
+ | + 0 - 0 +
+ 0 - | - 0 +
+ | - | + |
+Em relação ao gabarito, houve um erro de digitação. A reposta correta é -3 < m < -1.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por nathyn » Qua Nov 23, 2011 14:01
Aaaah muito obrigada =DD.
Fica com Deus...
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Andreza » Dom Nov 27, 2011 15:11
Eu não entendi a resolução deste exercício fui no link mas o texto nao está lá. As raízes não são -1, 1 e 3?
Desde já agradeço.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por nathyn » Ter Nov 29, 2011 15:56
Não Não a raiz é -1, 1 e -3 olha:
m² + 2m -3=0
delta= 2² -4(1)(-3) = 4+12 = 16
x1= (-2-4)/2 = -3
x2= (-2+4)/2 = 1
Vemos que como o coeficiente de m é positivo ela será uma parábola com a concavidade virada para baixo.
Então quando x<-3 ou x>1 teremos valores positivos para X, e quando -3<x<1 teremos valores negativos.
Agora pegamos a outra equação...
m² - 1= 0 e vamos que, m1= -1 e m2= 1, ou seja, quando x<-1 ou x>1 ela admite valores positivos
e quando -1<x<1 ela admite valores negativos...
Colocamos tudo isso no quadro de sinais igual ao que está ai em cima e pronto.
Espero que tenha entendido...
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5205 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
-
- [plano tangente a função de duas variaveis dada por função]
por isaac naruto » Qui Dez 31, 2015 16:35
- 0 Respostas
- 4333 Exibições
- Última mensagem por isaac naruto

Qui Dez 31, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5425 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
-
- +uma função das trevas.ajuda aew!(função par mas heim!?)
por Fabricio dalla » Dom Fev 27, 2011 16:12
- 2 Respostas
- 3331 Exibições
- Última mensagem por LuizAquino

Dom Mar 06, 2011 09:17
Funções
-
- [FUNÇÃO] Não consigo achar a fórmula da função
por LAZAROTTI » Qui Set 27, 2012 00:06
- 1 Respostas
- 2830 Exibições
- Última mensagem por MarceloFantini

Qui Set 27, 2012 07:13
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.