• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função quadrática

Função quadrática

Mensagempor Helise » Qua Mai 26, 2010 19:21

Um grupo de alunos da Uniterci programou uma viagem que custaria um total de 900 reais. Algumas semanas antes da partida, duas pessoas se juntaram ao grupo, e cada participante pagou 75 reais a menos. Qual era o número de pessoas que inicialmente fariam a viagem?
Helise
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 26, 2010 19:05
Formação Escolar: GRADUAÇÃO
Área/Curso: agronomia
Andamento: cursando

Re: Função quadrática

Mensagempor Molina » Qua Mai 26, 2010 19:39

Boa tarde, Helise.

Talvez a maior dificuldade deste problema é montar as equações. Chamaremos de x o número de pessoas que inicialmente fariam a viagem. Pelo enunciado temos que:

x pessoas pagarão r$ 900 \Rightarrow 1 pessoa pagará \frac{900}{x} (equação 1)

e

(x+2) pessoas pagarão r$ 900 \Rightarrow 1 pessoa pagará \frac{900}{x+2}-75 (equação 2)

Este 75 vem da informação do enunciado que diz que eles terão esse desconto com os novos participantes da viagem.

Igualando as equações 1 e 2, temos:

\frac{900}{x}=\frac{900}{x+2}-75

Resolvemos isso multiplicando cruzado e caindo numa equação do 2° grau.

Usando o método de achar raízes que você aprendeu, encontrará um valor negativo e um positivo. Descarte o negativo e fique apenas com x=4.

Caso não ache esse valor informe e diga até onde chegou.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}