• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÃO] Inversa

[FUNÇÃO] Inversa

Mensagempor Reavourz » Qui Jul 10, 2014 17:21

Olá pessoal estou com uma dúvida na parte da equação, bom vamos lá.

Exemplo:
y=2x+1

Eu substituí o y por x e o x por y ficando assim:
x=2y+1

Resolução:

x-2y=1=>
       -2y=-x+1=>
       -2y=-x+1.(-1)=>
        2y=x-1=>

y=\frac {x-1}{2}

Ai estava eu pesquisando algumas coisas vi isso em um site.

Para determinar a função inversa de f(x)=2x+1 basta:

y=2x+1 (trocar x por y)

x=2y+1 (isolar o y)

-2y= – x+1 (O +1 não deveria virar -1)?

2y= x+1 ( COMO PODE ISSO?)

y=(x+1)/2

f-¹(x)=(x+1)/2

Em meu livro também tem um parecido:

y=-4x+1

x=-4y+1=>
x+4y=1 =>
4y=-x+1

y=\frac{-x+1}{4}

no livro o resultado é y=\frac{1-x}{4}

Desde já agradeço.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor young_jedi » Qui Jul 10, 2014 21:17

a primeira função que voce posto

f(x)=2x+1

y=2x+1

x=2y+1

agora passando o x para o lado esquerdo da equação

0=2y-x+1

e passando o y para o lado direito

-2y=-x+1

multiplicando a equação por -1

2y=x-1

y=\frac{x-1}{2}

realmente a resposta apontada esta errada

agora o segundo caso

o resultado encontrado foi

y=\frac{-x+1}{4} que é a mesma coisa que y=\frac{1-x}{4}

esta correto não tem nenhuma incoerencia
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor Reavourz » Qui Jul 10, 2014 23:37

vlw cara pensei que estava errado minha resolução, pois essa Y=(x+1)/2 eu vi em um site que estava tratando de funções inversas, tenso quem aprendeu por lá aprendeu errado. Obrigado pela ajuda.

Pode me ajudar nesta aqui?

y=\frac {6x-1}{3x+2}

Bom o gabarito do livro está:

y=\frac {2x+1}{6-3x}

Eu fiz a primeira resolução:
Não consigo enxergar o que tem de errado aqui.
x(3y+2)=6y-1  =>  3xy+2x=6y-1  =>  3xy-6y=-2x-1 =>

=>  y(3x-6)=-2x-1  =>  y=\frac {-2x-1}{3x-6}

Fiz depois a segunda:

x(3y+2)=6y-1  =>  3xy+2x=6y-1  =>  2x+1=-3xy+6y  =>

=>  -3xy+6y=2x+1  =>  y(-3x+6)=2x+1  =>  y=\frac {2x+1}{6-3x}

Não sei o que estou fazendo de errado pois na y=-4x+1 deu das duas formas, tanto passando 4x positivo, como deixando negativo.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor young_jedi » Sex Jul 11, 2014 18:54

não tem nada de errado é so uma questão de trabalhar os sinais da expressão

y=\frac{-2x-1}{3x-6}

y=\frac{(-1)(2x+1)}{(-1)(-3x+6)}

simplificando o -1

y=\frac{2x+1}{6-3x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor Reavourz » Sáb Jul 12, 2014 00:11

vlw cara me ajudou muito, não tinha me ligado de aplicar o (-1) na fração vlw, muito obrigado.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.