• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinação de domínio da função

Determinação de domínio da função

Mensagempor Jonatan » Qua Jul 28, 2010 13:24

Determinar o domínio da função:

f(x)= \sqrt[2]{\frac{(1-x)({x}^{2}-4)}{2x-1}}

Estou sem o gabarito. Gostaria de conferir se resolvi corretamente.

O meu conjunto domínio, após ter estudado o sinal da função, através do Teorema de Bolzano, foi o seguinte:

D[f(x)] = {x \in \Re |-2 \leq x < \frac{1}{2}   e   1 \leq x \leq 2}

Confere?
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinação de domínio da função

Mensagempor MarceloFantini » Qua Jul 28, 2010 14:51

Confere, sua resposta está certa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.