• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo

Módulo

Mensagempor Rodrigo Tomaz » Sex Fev 19, 2010 11:36

Olá, bom dia...

Tenho uma dúvida quanto à idéia final duma questão.
Seu enunciado apenas diz: "Se a e b são números reais tais que \sqrt[2]{\frac{a}{b}}+\sqrt[2]{\frac{b}{a}}=\sqrt[2]{13}, quanto vale \left|\sqrt[2]{\frac{a}{b}}-\sqrt[2]{\frac{b}{a}} \right|?"

Então, eu comecei pela primeira expressão jogando a raiz quadrada do valor "13" para o outro lado:

\left(\sqrt[2]{\frac{a}{b}}+\sqrt[2]{\frac{b}{a}} \right)^2=13

Em seguida fui fazendo a resolução comum:

\left( \sqrt[2]{\frac{a}{b}} \right)^2+2*\sqrt[2]{\frac{a}{b}}*\sqrt[2]{\frac{b}{a}}+\left( \sqrt[2]{\frac{b}{a}} \right)^2=13 \Rightarrow \frac{a}{b}+2+\frac{b}{a}=13 \Rightarrow \frac{a}{b}+\frac{b}{a}=13-2=11

Logo... \frac{a}{b}+\frac{b}{a}=11

Daí então não consegui complementar a idéia.
Caro professor:

Será que o Senhor pode me ajudar a terminá-la? Ou ainda me dizer se esta idéia não tem fundamento pra achar a resposta em questão?

Agradeço sua atenção e espero resposta.
Rodrigo Tomaz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 19, 2010 10:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico mecânica
Andamento: cursando

Re: Módulo

Mensagempor guijermous » Qui Mar 04, 2010 15:48

Boa, tb não consegui resolver. Alguem poderia ajudar?
guijermous
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Fev 15, 2010 14:38
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Inf. Industrial
Andamento: formado

Re: Módulo

Mensagempor MarceloFantini » Qui Mar 04, 2010 22:38

Boa noite.

Não tenho certeza da resolução, mas aqui está como eu tentei.

\sqrt {\frac{a}{b}} + \sqrt {\frac{b}{a}} = \sqrt {13}

Multiplicando a primeira fração por \sqrt {a} em cima e embaixo, e fazendo o mesmo processo na segunda só que multiplicando por \sqrt {b}, temos:

\frac{a}{\sqrt {ab}} + \frac{b}{\sqrt {ab}} = \sqrt {13}

\frac {a+b}{\sqrt {ab}} = \sqrt {13}

Multiplicando por \sqrt {ab} dos dois lados:

a+b = \sqrt {13ab}

Elevando ao quadrado:

(a+b)^2 = (\sqrt {13ab})^2

a^2 + 2ab + b^2 = 13ab

Somando-se -4ab dos dois lados:

a^2 -2ab +b^2 = 9ab

(a-b)^2 = 9ab

Extraindo a raiz quadrada:

a-b = 3 \sqrt {ab}

Dividindo-se os dois lados por \sqrt {ab}:

\frac{a-b}{\sqrt {ab}} = 3

\frac{a}{\sqrt {ab}} - \frac{b}{\sqrt {ab}} = 3

Multiplicando a primeira fração por \sqrt {a} em cima e embaixo, e multiplicando a segunda por \sqrt {b} do mesmo modo:

\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} = 3

Portanto:

\left| \sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} \right| = 3

Acredito que seja isso.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Módulo

Mensagempor Rodrigo Tomaz » Qui Mar 04, 2010 23:16

Boa noite Fantini,
muito obrigado sua resposta está certíssima!
tentei fazer mas achei que a resolução era isolada! mas pelo seu raciocínio vejo que não é tão complicado...
que Deus te abençoe fica na paz vlw!
Rodrigo Tomaz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 19, 2010 10:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico mecânica
Andamento: cursando

Re: Módulo

Mensagempor MarceloFantini » Sex Mar 05, 2010 16:09

Boa tarde.

Fico feliz em ter ajudado, mas percebi que a minha resolução é extremamente grande e, pior de tudo, desnecessária. Aqui vai uma solução mais rápida:

x = \sqrt {\frac{a}{b}}

x + \frac{1}{x} = \sqrt {13}

(x + \frac{1}{x})^2 = (\sqrt {13})^2

x^2 +2 + \frac{1}{x^2} = 13

Somando-se (-4):

x^2 -2 + \frac{1}{x^2} = 9

(x - \frac{1}{x})^2 = 3^2

\sqrt {(x - \frac{1}{x})^2} = \sqrt {3^2}

\left| x - \frac{1}{x} \right| = 3

Espero ter ajudado (mais rapidamente).

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D