• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Segundo grau e exponencial, inclinação dessas curvas

Segundo grau e exponencial, inclinação dessas curvas

Mensagempor Zelp » Sáb Mar 14, 2015 23:42

Como faço para determinar a inclinação das curvas formadas pela função do segundo grau e a função exponencial no plano cartesiano? Procurei em vários lugares, até em livros, a única coisa que achei foi uma senhora dizendo que é impossível fazer isso... Penso que se há como determinar o ângulo de uma reta no plano cartesiano, por que não de uma curva? Alguém sabe responder se existe como, tem algo a ver com a derivada?
Zelp
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 14, 2015 23:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Segundo grau e exponencial, inclinação dessas curvas

Mensagempor Russman » Dom Mar 15, 2015 20:15

A derivada de uma função calculada em um ponto é numericamente igual a inclinação da reta que tangência essa função nesse ponto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Segundo grau e exponencial, inclinação dessas curvas

Mensagempor Zelp » Dom Mar 15, 2015 23:23

Russman escreveu:A derivada de uma função calculada em um ponto é numericamente igual a inclinação da reta que tangência essa função nesse ponto.

Obrigado pela resposta!
Zelp
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 14, 2015 23:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)