• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio das funções

Domínio das funções

Mensagempor kellykcl » Qui Abr 10, 2014 20:18

Boa noite galera do fórum!
Mais uma vez precisando da ajuda de vocês!

Determine o domínio das seguintes funções:

1) f(x)=\frac{1}{\sqrt[]{9-{x}^{2}}}

9-{x}^{2}>0

-{x}^{2}+9=0

-{x}^{2}=-9

x=\sqrt[]{9}

x=\pm 3
Imagem

D(f)= \left|x\,\epsilon\,\Re\,\prime\,-3<x<3 \right|


2)f(x)= \frac{\sqrt[]{{x}^{2}+x}}{{x}^{2}+x}

Gabarito: D(f)=  \left| x\, \epsilon\, R / x< -1\, ou\, x>0\right|

Obs.:Não sei como resolver esta última questão, como o denominador tem que ser \neq 0, não estou sabendo esboçar o gráfico! *-)
Gostaria de saber se a primeira está correta (não tenho gabarito) e também como fazer a segunda incluindo o gráfico!

Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Domínio das funções

Mensagempor Lucio Carvalho » Qui Abr 10, 2014 21:39

Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio
Anexos
Domínio.png
Domínio.png (5.92 KiB) Exibido 2011 vezes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Domínio das funções

Mensagempor kellykcl » Sex Abr 11, 2014 14:15

Lucio Carvalho escreveu:Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio


Obrigada pela tentativa, mas minha dificuldade é que por serem duas inequações do 2º grau, encontramos 4 raízes ( 2 raízes de uma e duas da outra, embora com o mesmo resultado: 0 e -1) , difícil explicar onde estou errando pois estou completamente perdida neste exercício!
Você respondeu que no numerador, por ser uma raiz , a condição seria {x}^{2}+x > 0 , porém eu fiz {x}^{2}+x \geq 0 !
Se alguém pudesse me explicar passo a passo ajudaria muito!
Gostaria de saber tb se a primeira está correta! :y: :?:
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.