por kellykcl » Qui Abr 10, 2014 20:18
Boa noite galera do fórum!
Mais uma vez precisando da ajuda de vocês!
Determine o domínio das seguintes funções:
1)
![f(x)=\frac{1}{\sqrt[]{9-{x}^{2}}} f(x)=\frac{1}{\sqrt[]{9-{x}^{2}}}](/latexrender/pictures/2ca0cc4c086c319df690d96cabd60891.png)



![x=\sqrt[]{9} x=\sqrt[]{9}](/latexrender/pictures/e3bba98047539d564c787e8b39fbef97.png)



2)
![f(x)= \frac{\sqrt[]{{x}^{2}+x}}{{x}^{2}+x} f(x)= \frac{\sqrt[]{{x}^{2}+x}}{{x}^{2}+x}](/latexrender/pictures/57d12ed478b1ca4cff834f7d003fce23.png)
Gabarito:

Obs.:Não sei como resolver esta última questão, como o denominador tem que ser

0, não estou sabendo esboçar o gráfico!
Gostaria de saber se a primeira está correta (não tenho gabarito) e também como fazer a segunda incluindo o gráfico!
Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
-
kellykcl
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Fev 15, 2013 16:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: formado
por kellykcl » Sex Abr 11, 2014 14:15
Lucio Carvalho escreveu:Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio
Obrigada pela tentativa, mas minha dificuldade é que por serem duas inequações do 2º grau, encontramos 4 raízes ( 2 raízes de uma e duas da outra, embora com o mesmo resultado: 0 e -1) , difícil explicar onde estou errando pois estou completamente perdida neste exercício!
Você respondeu que no numerador, por ser uma raiz , a condição seria

, porém eu fiz

!
Se alguém pudesse me explicar passo a passo ajudaria muito!
Gostaria de saber tb se a primeira está correta!

"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
-
kellykcl
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Fev 15, 2013 16:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções] Domínio e a imagem de funções
por concurseironf » Qui Ago 21, 2014 12:24
- 1 Respostas
- 3994 Exibições
- Última mensagem por Pessoa Estranha

Sex Ago 22, 2014 20:11
Funções
-
- [domínio] Funcões
por Cleyson007 » Qua Out 29, 2008 00:28
- 2 Respostas
- 2292 Exibições
- Última mensagem por Cleyson007

Seg Jun 01, 2009 12:38
Funções
-
- Funções - Intervalo, Domínio
por jorgeltpereira » Seg Dez 08, 2008 10:33
- 1 Respostas
- 1679 Exibições
- Última mensagem por Neperiano

Qua Ago 24, 2011 15:07
Funções
-
- Funções:Domínio e Imagem
por +Julia » Sáb Abr 12, 2014 09:54
- 0 Respostas
- 1074 Exibições
- Última mensagem por +Julia

Sáb Abr 12, 2014 09:54
Funções
-
- Dominio de funções, ajuda por favor ?
por fabio155nike » Qui Jul 17, 2014 15:58
- 0 Respostas
- 1310 Exibições
- Última mensagem por fabio155nike

Qui Jul 17, 2014 15:58
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.